Skip to main content

Advertisement

Log in

Mechanical characteristics and fracture behavior of GaN/DBA die-attached during thermal aging: pressure-less hybrid Ag sinter joint and Pb–5Sn solder joint

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ag sinter joining provides superior mechanical and thermal/electrical properties and is considered to become a leading next-generation wide band-gap (WBG) die-attach material. However, the microstructural evolution and mechanical characteristics of Ag sinter joining when subjected to high temperature have never been directly compared to those same characteristics of solder materials. In this study, we have evaluated the high-temperature and long-term reliability of a GaN/DBA die-attached module by pressure-less Ag sinter joining and Pb–5Sn solder in a harsh thermal aging test. Both the Ag sinter joining and Pb–5Sn solder were subjected to a thermal aging test of up to 1000 h at 250 °C. Initial shear strength of the Ag sinter joint exceeded 42 MPa, and increased stably up to 1000 h without any defects such as interface oxidation, diffusion, or mechanical deformation. The increase in shear strength of the Ag sinter joints was the result of necking growth of the sintered Ag during thermal aging. On the other hand, the shear strength of the Pb–5Sn joints exhibited substantially decreased shear strength (by 60%) after aging 250 h. NixSnx intermetallic compounds (IMC) were also formed and serious interface degradation occurred during the aging process. These microstructure changes and mechanical characteristics have an important influence on mechanical reliability and, with that in mind, the tendency of fracture mechanism was investigated in detail by SEM–EDX. This study systematically examines the fracture mechanism on the microstructure of a DBA substrate and on high-temperature packaging during thermal aging tests for WBG semiconductor device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. F. Roccaforte, P. Fiorenza, G. Greco, M. Vivona, R.L. Nigro, F. Giannazzo, A. Patti, M. Saggio, Recent advances on dielectrics technology for SiC and GaN power devices. Appl. Surf. Sci. 301, 9–18 (2014)

    Article  CAS  Google Scholar 

  2. M. Le-Huu, F.F. Schrey, M. Grieb, H. Schmitt, V. Häublein, A.J. Bauer, H. Ryssel, L. Frey, NMOS logic circuits using 4H-SiC MOSFETs for high temperature applications. Mater. Sci. Forum. 645–6648, 1143–1146 (2010). https://doi.org/10.4028/www.scientific.net/MSF.645-648.1143

    Article  CAS  Google Scholar 

  3. J. Millan, P. Godignon, X. Perpina, A. Perez-Tomas, J. Rebollo, A survey of wide bandgap power semiconductor devices. IEEE Trans. Power Electron. 29, 2155–2163 (2014). https://doi.org/10.1109/TPEL.2013.2268900

    Article  Google Scholar 

  4. H. Okumura, Present Status and Future Prospect of Widegap Semiconductor High-Power Devices (2006). https://doi.org/10.1143/JJAP.45.7565

    Article  Google Scholar 

  5. D. Kim, C. Chen, C. Pei, Z. Zhang, S. Nagao, A. Suetake, T. Sugahara, K. Suganuma, Thermal shock reliability of a GaN die-attach module on DBA substrate with Ti/Ag metallization by using micron/submicron Ag sinter paste. Jpn. J. Appl. Phys. 58, SBBD15 (2019)

    Article  CAS  Google Scholar 

  6. T. Kim, T. Funaki, Thermal measurement and analysis of packaged SiC MOSFETs. Thermochim. Acta 633, 31–36 (2016). https://doi.org/10.1016/j.tca.2016.03.004

    Article  CAS  Google Scholar 

  7. S. Noh, C. Choe, C. Chen, K. Suganuma, Heat-resistant die-attach with cold-rolled Ag sheet. Appl. Phys. Express 11, 016501 (2018). https://doi.org/10.7567/apex.11.016501

    Article  CAS  Google Scholar 

  8. K.Y. Wong, W. Chen, X. Liu, C. Zhou, K.J. Chen, GaN smart power IC technology. Phys. Status Solidi Basic Res. 247, 1732–1734 (2010). https://doi.org/10.1002/pssb.200983453

    Article  CAS  Google Scholar 

  9. H.S. Chin, K.Y. Cheong, A.B. Ismail, A review on die attach materials for SiC-based high-temperature power devices. Metall. Mater. Trans. B 41, 824–832 (2010). https://doi.org/10.1007/s11663-010-9365-5

    Article  CAS  Google Scholar 

  10. R.W. Johnson, I. Fellow, J.L. Evans, P. Jacobsen, J.R. Thompson, M. Christopher, The changing automotive environment: high-temperature electronics. IEEE Trans. Electron. Packag. Manuf. 27, 164–176 (2004). https://doi.org/10.1109/tepm.2004.843109

    Article  Google Scholar 

  11. L. Bartolomeo, L. Abbatelli, M. Macauda, F. Di, G. Catalisano, M. Ryzek, D. Kohout, Wide band gap materials : revolution in automotive power electronics. in International Electric Vehicle Technology & Automobile Power Electronics Japan Conference (EVTec & APE Japan, 2016) pp. 2–6

  12. M. Hoshi, Electric vehicles and expectations for wide bandgap power devices, in: Proc. Int. Symp. Power Semicond. Devices ICs, 2016: pp. 5–8. https://doi.org/10.1109/ispsd.2016.7520765

  13. C. Chen, C. Choe, Z. Zhang, D. Kim, K. Suganuma, Low-stress design of bonding structure and its thermal shock performance (− 50 to 250 °C) in SiC/DBC power die-attached modules. J. Mater. Sci.: Mater. Electron. 29, 14335–14346 (2018). https://doi.org/10.1007/s10854-018-9568-0

    Article  CAS  Google Scholar 

  14. S. Kim, K.S. Kim, S.S. Kim, K. Suganuma, G. Izuta, Improving the reliability of Si die attachment with Zn-Sn-based high-temperature Pb-free solder using a TiN diffusion barrier. J. Electron. Mater. 38, 2668–2675 (2009). https://doi.org/10.1007/s11664-009-0928-7

    Article  CAS  Google Scholar 

  15. J. Lee, K. Kim, K. Suganuma, J. Takenaka, K. Hagio, Interfacial properties of Zn–Sn alloys as high temperature lead-free solder on Cu substrate. Mater. Trans. 46, 2413–2418 (2005). https://doi.org/10.2320/matertrans.46.2413

    Article  CAS  Google Scholar 

  16. S. Sakamoto, S. Nagao, K. Suganuma, Thermal fatigue of Ag flake sintering die-attachment for Si/SiC power devices. J. Mater. Sci.: Mater. Electron. 24, 2593–2601 (2013). https://doi.org/10.1007/s10854-013-1138-x

    Article  CAS  Google Scholar 

  17. E. George, M. Pecht, Microelectronics Reliability RoHS compliance in safety and reliability critical electronics. Cost Reliab. MR. 65, 1–7 (2016). https://doi.org/10.1016/j.microrel.2016.07.150

    Article  Google Scholar 

  18. S. Menon, E. George, M. Osterman, M. Pecht, High lead solder (over 85%) solder in the electronics industry : RoHS exemptions and alternatives High lead solder (over 85%) solder in the electronics industry : RoHS exemptions and alternatives. J. Mater. Sci. Mater. Electron. 26(6), 4021–4030 (2015). https://doi.org/10.1007/s10854-015-2940-4

    Article  CAS  Google Scholar 

  19. J. Jiu, H. Zhang, S. Nagao, T. Sugahara, N. Kagami, Y. Suzuki, Y. Akai, K. Suganuma, Die-attaching silver paste based on a novel solvent for high-power semiconductor devices. J. Mater. Sci. 51, 3422–3430 (2016). https://doi.org/10.1007/s10853-015-9659-8

    Article  CAS  Google Scholar 

  20. K. Suganuma, S. Sakamoto, N. Kagami, D. Wakuda, K.S. Kim, M. Nogi, Low-temperature low-pressure die attach with hybrid silver particle paste. Microelectron. Reliab. 52, 375–380 (2012). https://doi.org/10.1016/j.microrel.2011.07.088

    Article  CAS  Google Scholar 

  21. Z.Z. Zhang, G.Q. Lu, Pressure-assisted low-temperature sintering of silver paste as an alternative die-attach solution to solder reflow. IEEE Trans. Electron. Packag. Manuf. 25, 279–283 (2002). https://doi.org/10.1109/TEPM.2002.807719

    Article  CAS  Google Scholar 

  22. Z. Zhang, C. Chen, Y. Yang, H. Zhang, D. Kim, T. Sugahara, S. Nagao, K. Suganuma, Low-temperature and pressureless sinter joining of Cu with micron/submicron Ag particle paste in air. J. Alloys Compds. 780, 435–442 (2019). https://doi.org/10.1016/j.jallcom.2018.11.251

    Article  CAS  Google Scholar 

  23. K. Hromadka, J. Stulik, J. Reboun, A. Hamacek, DBC technology for low cost power electronic substrate manufacturing. Procedia Eng. 69, 1180–1183 (2014). https://doi.org/10.1016/j.proeng.2014.03.107

    Article  CAS  Google Scholar 

  24. A. Lindemann, G. Strauch, Properties of direct aluminium bonded substrates for power semiconductor components, PESC Rec.—IEEE Annu. Power Electron. Spec. Conf. 6 (2004) 4171–4177. https://doi.org/10.1109/pesc.2004.1354737.

  25. H. He, R. Fu, D. Wang, X. Song, M. Jing, A new method for preparation of direct bonding copper substrate on Al2O3. Mater. Lett. 61, 4131–4133 (2007). https://doi.org/10.1016/j.matlet.2007.01.036

    Article  CAS  Google Scholar 

  26. Y. Mei, G.Q. Lu, X. Chen, C. Gang, S. Luo, D. Ibitayo, Investigation of post-etch copper residue on direct bonded copper (DBC) substrates. J. Electron. Mater. 40, 2119–2125 (2011). https://doi.org/10.1007/s11664-011-1716-8

    Article  CAS  Google Scholar 

  27. H. Zhang, S. Nagao, K. Suganuma, H.J. Albrecht, K. Wilke, Thermostable Ag die-attach structure for high-temperature power devices. J. Mater. Sci.: Mater. Electron. 27, 1337–1344 (2016). https://doi.org/10.1007/s10854-015-3894-2

    Article  CAS  Google Scholar 

  28. H. Zhang, C. Chen, S. Nagao, K. Suganuma, Thermal fatigue behavior of silicon-carbide-doped silver microflake sinter joints for die attachment in silicon/silicon carbide power devices. J. Electron. Mater. 46, 1055–1060 (2017). https://doi.org/10.1007/s11664-016-5069-1

    Article  CAS  Google Scholar 

  29. C. Choe, C. Chen, S. Noh, Thermal shock performance of DBA/AMB substrates plated by Ni and Ni–P layers for high-temperature applications of power device modules. Materials (Basel). 11, 2394 (2018). https://doi.org/10.3390/ma11122394

    Article  CAS  Google Scholar 

  30. Y. Liu, Y. Xu, Y. Liu, Reliability modeling analysis of a power module, in: 2013 14th Int. Conf. Therm. Mech. Multi-Physics Simul. Exp. Microelectron. Microsystems, EuroSimE 2013, 2013: pp. 1–11. https://doi.org/10.1109/eurosime.2013.6529930.

  31. J. Dai, J. Li, P. Agyakwa, M. Corfield, C.M. Johnson, Comparative thermal and structural characterization of sintered nano-silver and high-lead solder die attachments during power cycling. IEEE Trans. Device Mater. Reliab. 18, 256–265 (2018). https://doi.org/10.1109/TDMR.2018.2825386

    Article  CAS  Google Scholar 

  32. M. Knoerr, S. Kraft, A. Schletz, Reliability Assessment of Sintered Nano-Silver Die Attachment for Power Semiconductors, in: 2010 12th Electron. Packag. Technol. Conf., IEEE, 2010, pp. 56–61.

  33. Y. Jeon, K. Paik, Studies on Ni-Sn intermetallic compound and P-rich Ni layer at the electroless nickel UBM—solder interface and their effects on flip chip solder joint reliability, in: components pp. 1–7. https://doi.org/10.1109/ectc.2001.928003

  34. A.M. Minor, J.W. Morris, Growth of a Au-Ni-Sn intermetallic compound on the solder-substrate interface after aging. Metall. Mater. Trans. A 31, 798–800 (2000). https://doi.org/10.1007/s11661-000-0022-5

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the JST Advanced Carbon Technology Research and Development Program (ALCA) project “Development of a high frequency GaN power module package technology” (Grant No. JPMJAL1610). The author is thankful to the Network Joint Research Centre for Materials and Devices, Dynamic Alliance for Open Innovation Bridging Human, Environment and Materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuantong Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 289 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, D., Chen, C., Nagao, S. et al. Mechanical characteristics and fracture behavior of GaN/DBA die-attached during thermal aging: pressure-less hybrid Ag sinter joint and Pb–5Sn solder joint. J Mater Sci: Mater Electron 31, 587–598 (2020). https://doi.org/10.1007/s10854-019-02563-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02563-8

Navigation