Skip to main content
Log in

A Simple and Facile Iodination Method for Improving Sinterability and Electrical Conductivity of Silver Thick Films

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Micro-sized silver powders were decorated with nano-scaled Ag/AgI clusters on the surface via a simple reaction with iodine and subsequent exposure to sunshine. Surface morphologies, crystal structures, and thermal properties of the powders were characterized. The powders with different mole ratios of I:Ag (0:100, 2:100, 10:100) were employed in silver pastes to evaluate sinterability and electrical conductivity of thick films. Microstructures and sheet resistance of the films were investigated by scanning electron microscopy and the four-point probe method. The particles coated with and without nano-sized Ag/AgI clusters showed different sintering behaviors. Moreover, clear necks were formed between the Ag particles with the ratio of 2:100 even at 570°C, whereas those untreated remained discrete. However, over-decoration lowered sinterability and electrical conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Chen, Y.J. Cao, Y.H. Mei, and D. Han, IEEE Trans. Compon. Packag. Manuf. Technol. 2, 1759 (2012).

    Article  Google Scholar 

  2. Q.D. Che, H.X. Yang, L. Lu, and Y.H. Wang, J. Alloys Compd. 549, 221 (2013).

    Article  Google Scholar 

  3. J.T. Tsai and S.T. Lin, J. Alloys Compd. 548, 105 (2013).

    Article  Google Scholar 

  4. M. Levlin and A. Laakso, Appl. Surf. Sci. 171, 257 (2001).

    Article  Google Scholar 

  5. S. Schaefers, L. Rast, and A. Stanishevsky, Mater. Lett. 60, 706 (2006).

    Article  Google Scholar 

  6. Y.J. Hu, H.Y. Zhang, X.L. Cheng, F. Li, and T.L. Chen, Appl. Surf. Sci. 257, 2813 (2011).

    Article  Google Scholar 

  7. M. Jakubowska, M. Jarosz, and K. Kiełbasinski, Microelectron. Reliab. 51, 1235 (2011).

    Article  Google Scholar 

  8. J. Yang, J.Y. Lee, and H.P. Too, J. Phys. Chem. B 109, 19208 (2005).

    Article  Google Scholar 

  9. Q.F. Zhou and Z. Xu, J. Mater. Sci. 39, 2487 (2004).

    Article  Google Scholar 

  10. M.E.B. Calvo, O.D. Renedo, and M.J.A. Martímez, Talanta 74, 59 (2007).

    Article  Google Scholar 

  11. J.R. Greer and R.A. Street, Acta Mater. 55, 6345 (2007).

    Article  Google Scholar 

  12. T. Wang, X. Chen, G.Q. Lu, and G.Y. Lei, J. Electron. Mater. 36, 1333 (2007).

    Article  Google Scholar 

  13. K.S. Moon, H. Dong, R. Maric, S. Pothukuchi, A. Hunt, Y. Li, and C.P. Wong, J. Electron. Mater. 34, 168 (2005).

    Article  Google Scholar 

  14. P.A. Hu, W. O’Neil, and Q. Hu, Appl. Surf. Sci. 257, 680 (2010).

    Article  Google Scholar 

  15. S.B. Rane, T. Seth, and G.J. Phatak, et al., J. Mater. Sci. 15, 103 (2004).

    Google Scholar 

  16. J.H. Sohn, L.Q. Pham, H.S. Kang, J.H. Park, B.C. Lee, and Y.S. Kang, Radiat. Phys. Chem. 79, 1149 (2010).

    Article  Google Scholar 

  17. C. Früh, M. Günther, M. Rittner, A. Fix, and M. Nowottnick, Proc. Electron. Syst. Integr. Tech. Conf., 2010, p. 1.

  18. J. Jiu, K. Murai, K. Kim, and K. Suganuma, Proceedings of the 7th IEEE Conference on Polymers and Adhesives in Microelectronics and Photonics, 2008, p. 1.

  19. Q.D. Che, H.X. Yang, L. Lu, and Y.H. Wang, J. Mater. Sci.: Mater. Electron. 24, 524 (2013).

    Google Scholar 

  20. D.S. Seo, S.H. Park, and J.K. Lee, Curr. Appl. Phys. 9, S72 (2009).

    Article  Google Scholar 

  21. S.H. Park, D.S. Seo, and J.K. Lee, Colloids Surf. A 313–314, 197 (2008).

    Article  Google Scholar 

  22. H. Ogura, M. Maruyama, and R. Matsubayashi, et al., J.␣Electron. Mater. 39, 1233 (2010).

    Article  Google Scholar 

  23. M. Maruyama, R. Matsubayashi, H. Iwakuro, S. Isoda, and T. Komatsu, Appl. Phys. A 93, 467 (2008).

    Article  Google Scholar 

  24. H.C. Lin, P. Lin, C.A. Lu, and S.F. Wang, Microelectron. Eng. 86, 2316 (2009).

    Article  Google Scholar 

  25. N.J. Yang, K. Aoki, and H. Nagasawa, J. Phys. Chem. B 108, 15027 (2004).

    Article  Google Scholar 

  26. R.W. Zhang, W. Lin, and K.S. Moon, ACS Appl. Mater. Interfaces 2, 2637 (2010).

    Article  Google Scholar 

  27. M. Tatsumisago, Y. Shinkuma, and T. Minami, Nature 354, 217 (1991).

    Article  Google Scholar 

  28. P. Boolchand and W.J. Bresser, Nature 410, 1070 (2001).

    Article  Google Scholar 

  29. T. Hirono, A. Kawana, and T. Yamada, J. Appl. Phys. 63, 1196 (1988).

    Article  Google Scholar 

  30. U. Hasse, K. Wagner, and F. Scholz, J. Solid State Electrochem. 8, 842 (2004).

    Article  Google Scholar 

  31. U. Hasse, S. Fletcher, and F. Scholz, J. Solid State Electrochem. 10, 833 (2006).

    Article  Google Scholar 

  32. Z. Liu, X.L. Qi, and H. Wang, Adv. Powder Technol. 23, 250 (2012).

    Article  Google Scholar 

  33. S.K. Bose and S.C. Sircar, Metall. Trans. 5, 2015 (1974).

    Article  Google Scholar 

  34. P.S. Kumar and C.S. Sunandana, Thin Solid Films 323, 110 (1998).

    Article  Google Scholar 

  35. P.S, Kumar, P.B. Dayal, and C.S. Sunandana, Thin Solid Films 357, 111 (1999).

    Article  Google Scholar 

  36. Wei Sun, Yuanzhi Li, and Wenqin Shi, et al., J. Mater. Chem. 21, 9263 (2011).

    Article  Google Scholar 

  37. J.G.P. Binner, G. Dimitrakis, and D.M. Price, et al., J.␣Therm. Anal. Calorim. 84, 409 (2006).

    Article  Google Scholar 

  38. S. Čuvanová, M. Reháková, and Z. Bastl, et al., J. Therm. Anal. Calorim. 84, 721 (2006).

    Article  Google Scholar 

  39. R.W. Zhang, K.S. Moon, and W. Lin, et al., J. Mater. Chem. 20, 2018 (2010).

    Article  Google Scholar 

  40. S.A. Ketkar, G.G. Umarji, and G.J. Phatak, et al., Mater. Chem. Phys. 96, 145 (2006).

    Article  Google Scholar 

  41. M.G. Norton, J. Mater. Sci. 26, 2322 (1991).

    Article  Google Scholar 

  42. W.D. Kingery, J. Appl. Phys. 30, 301 (1959).

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the writing guidance from Prof. Feng Zheng and help in the experiment from Hongbo Tang and Gang Yang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Gan, W., Li, Y. et al. A Simple and Facile Iodination Method for Improving Sinterability and Electrical Conductivity of Silver Thick Films. J. Electron. Mater. 43, 3389–3396 (2014). https://doi.org/10.1007/s11664-014-3260-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3260-9

Keywords

Navigation