Skip to main content
Log in

Effects of Fe/SiO2 Ratio and MgO Content on the Viscous Behaviors of the SiO2–FeO–MgO–12 Wt Pct Fe2O3–8 Wt Pct CaO–3 Wt Pct Al2O3 Slag System

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The present study investigated the effects of Fe/SiO2 and MgO content on the viscous behaviors of the slag formed by the charging of secondary resources into the copper-smelting furnace. It is determined that the increase of Fe/SiO2 (0.8–1.2) and the addition of MgO (1–7 wt pct) both reduce the slag viscosity. The addition of MgO accelerates the transition of breaking temperature of slags to higher temperatures, while the effect of Fe/SiO2 on that is relatively complicated. Fourier transform infrared spectroscopy (FTIR) and Raman spectra indicate that increases in either Fe/SiO2 or MgO content contribute to depolymerization of silicate network structures in high-temperature melts. The [AlO6]9− octahedra in the melt tended to increase with increasing Fe/SiO2 and MgO content, while the opposite change is observed for [FeO4]5− tetrahedra. Moreover, an increase in Fe/SiO2 or MgO content also leads to a gradual decrease in the activation energy of slag viscous flow, except in the case of Fe/SiO2 of 1.2 and MgO content of 7 wt pct. This unexpected discrepancy can be accounted for different types of flow units that arise in the slag at high temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M. Chen and B. Zhao: Metall. Mater. Trans. B., 2015, vol. 46B, pp. 577–84.

    Article  Google Scholar 

  2. A. Shankar, M. Gornerup, A.K. Lahiri, and S. Seetharaman: Metall. Mater. Trans. B, 2007, vol. 38B, pp. 911–15.

    Article  CAS  Google Scholar 

  3. A. Kondratiev, E. Jak, and P.C. Hayes: JOM., 2002, vol. 54, pp. 41–45.

    Article  CAS  Google Scholar 

  4. A. Kondratiev and E. Jak: Fuel., 2001, vol. 80, pp. 1989–2000.

    Article  CAS  Google Scholar 

  5. X. Hu, Z. Ren, G. Zhang, L. Wang, and K. Chou: Int. J. Miner. Metall. Mater., 2012, vol. 19, pp. 1088–92.

    Article  CAS  Google Scholar 

  6. G. Zhang, K. Chou, and K. Mills: ISIJ Int., 2012, vol. 52, pp. 355–62.

    Article  CAS  Google Scholar 

  7. J.H. Park, H. Kim, and D.J. Min: Metall. Mater. Trans. B, 2008, vol. 39B, pp. 150–53.

    Article  CAS  Google Scholar 

  8. M. Nakamoto, T. Tanaka, J.H. Lee, and T. Usui: ISIJ Int., 2004, vol. 44, pp. 2115–19.

    Article  CAS  Google Scholar 

  9. M.M. Hasan, M.A. Rhamdhani, M.A.H. Shuva, and G.A. Brooks: Metals, 2020, vol. 10, pp. 1–23.

    Article  Google Scholar 

  10. H. Kim, W.H. Kim, I. Sohn, and D.J. Min: Steel Res. Int., 2010, vol. 81, pp. 261–64.

    Article  CAS  Google Scholar 

  11. Y. Gao, S. Wang, C. Hong, X. Ma, and F. Yang: Int. J. Miner. Metall. Mater., 2014, vol. 21, pp. 353–62.

    Article  CAS  Google Scholar 

  12. Z. Yan, X. Lv, J. Zhang, Y. Qin, and C. Bai: Can. Metall. Q., 2016, vol. 55, pp. 186–94.

    Article  CAS  Google Scholar 

  13. A.C. Ducret and W.J. Rankin: Scand. J. Metall., 2002, vol. 31, pp. 59–67.

    Article  CAS  Google Scholar 

  14. Y.S. Lee, D.J. Min, S.M. Jung, and S.H. Yi: ISIJ Int., 2004, vol. 44, pp. 1283–90.

    Article  CAS  Google Scholar 

  15. J.R. Kim, Y.S. Lee, D.J. Min, S.M. Jung, and S.H. Yi: ISIJ Int., 2004, vol. 44, pp. 1291–97.

    Article  CAS  Google Scholar 

  16. T. Li, C. Sun, S. Song, and Q. Wang: Metals, 2019, vol. 9, pp. 1–12.

    Google Scholar 

  17. Z. Wang, Y. Sun, S. Sridhar, M. Zhang, M. Guo, and Z. Zhang: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 537–41.

    Article  Google Scholar 

  18. K. Zheng, Z. Zhang, L. Liu, and X. Wang: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 1389–97.

    Article  Google Scholar 

  19. C. Feng, M. Chu, J. Tang, Y. Tang, and Z. Liu: Steel Res. Int., 2016, vol. 87, pp. 1274–83.

    Article  CAS  Google Scholar 

  20. L. Wu, J. Gran, and D. Sichen: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 928–31.

    Article  Google Scholar 

  21. J.S. Choi, T.J. Park, D.J. Min, and I. Sohn: J. Mater. Res. Technol., 2021, vol. 15, pp. 1382–94.

    Article  CAS  Google Scholar 

  22. J.S. Choi, T.J. Park, and D.J. Min: J. Am. Ceram. Soc., 2021, vol. 104, pp. 140–56.

    Article  CAS  Google Scholar 

  23. H. Kim and I. Sohn: ISIJ Int., 2011, vol. 51, pp. 1–8.

    Article  CAS  Google Scholar 

  24. S. Sridhar, K.C. Mills, O.D.C. Afrange, H.P. Lörz, and R. Carli: Ironmak. Steelmak., 2000, vol. 27, pp. 238–42.

    Article  CAS  Google Scholar 

  25. H. Kim, H. Matsuura, F. Tsukihashi, W. Wang, D.J. Min, and I. Sohn: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 5–12.

    Article  Google Scholar 

  26. J. Lü, Z. Jin, H. Yang, L. Tong, G. Chen, and F. Xiao: Int. J. Miner. Metall. Mater., 2017, vol. 24, pp. 756–67.

    Article  Google Scholar 

  27. N. Saito, N. Hori, K. Nakashima, and K. Mori: Metall. Mater. Trans. B, 2003, vol. 34B, pp. 509–16.

    Article  CAS  Google Scholar 

  28. D.B. Dingwell and D. Virgo: Geochim. Cosmochim. Acta., 1987, vol. 51, pp. 195–205.

    Article  CAS  Google Scholar 

  29. H. Park, J. Park, G.H. Kim, and I. Sohn: Steel Res. Int., 2012, vol. 83, pp. 150–56.

    Article  CAS  Google Scholar 

  30. H. Park, S.S. Park, and I. Sohn: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 692–99.

    Google Scholar 

  31. S.S. Jung and I. Sohn: Environ. Sci. Technol., 2014, vol. 48, pp. 1886–92.

    Article  CAS  Google Scholar 

  32. J.H. Park, D.J. Min, and H.S. Song: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 269–75.

    Article  CAS  Google Scholar 

  33. Z.J. Wang, Q.F. Shu, S. Sridhar, M. Zhang, M. Guo, and Z.T. Zhang: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 758–65.

    Article  Google Scholar 

  34. T.S. Kim and J.H. Park: J. Non-Cryst. Solids., 2020, vol. 542, p. 120089.

    Article  CAS  Google Scholar 

  35. G. Lucazeau, N. Sergent, T. Pagnier, A. Shaula, V. Kharton, and F.M.B. Marques: J. Raman Spectrosc., 2007, vol. 38, pp. 21–33.

    Article  CAS  Google Scholar 

  36. B.O. Mysen, L.W. Finger, D. Virgo, and F.A. Seifert: Am. Miner., 1982, vol. 67, pp. 686–95.

    CAS  Google Scholar 

  37. B.O. Mysen, D. Virgo, and C.M. Scarfe: Am. Miner., 1980, vol. 65, pp. 690–710.

    CAS  Google Scholar 

  38. Z. Jin, H. Yang, J. Lv, L. Tong, G. Chen, and Q. Zhang: JOM., 2018, vol. 70, pp. 1430–36.

    Article  CAS  Google Scholar 

  39. L. Wang, C. Zhang, D. Cai, J. Zhang, Y. Sasaki, and O. Ostrovski: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 516–26.

    Article  Google Scholar 

  40. T. Talapaneni, N. Yedla, S. Pal, and S. Sarkar: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 1450–62.

    Article  Google Scholar 

  41. G. Urbain, Y. Bottinga, and P. Richet: Geochim. Cosmochim. Acta., 1982, vol. 46, pp. 1061–72.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key R&D Program of China (Grant No. 2018YFC1902004) and the Special Fund for the National Natural Science Foundation of China (Grant No. U1608254).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoren Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Figures A1 and A2.

Fig. A1
figure 13

Effect of MgO content on the precipitation of tridymite at Fe/SiO2 of 0.8

Fig. A2
figure 14

Effect of MgO content on the precipitation of magnesia olivine at Fe/SiO2 of 0.8

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, Z., Wang, B., Liu, Z. et al. Effects of Fe/SiO2 Ratio and MgO Content on the Viscous Behaviors of the SiO2–FeO–MgO–12 Wt Pct Fe2O3–8 Wt Pct CaO–3 Wt Pct Al2O3 Slag System. Metall Mater Trans B 53, 902–915 (2022). https://doi.org/10.1007/s11663-022-02432-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02432-6

Navigation