Skip to main content
Log in

Direct Observation of Pure Cu and Cu-Ag Anode Passivation in H2SO4-CuSO4 Aqueous Solution by Channel Flow Double Electrode and Optical Microscopy

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The dissolution and passivation of pure Cu and Cu-5 wt pct Ag anodes in H2SO4-CuSO4 electrolyte were investigated by a direct observation method that combined the techniques of optical microscopy and channel flow double electrode. Linear sweep voltammetry of the anodes showed that the dissolution of Cu transited from the charge transfer-controlled reaction to the mass transfer-controlled reaction, followed by the passivation of the electrodes. The direct observation of the pure Cu anode revealed that Cu particles were generated on the surface and the particles fell away during passivation. On the other hand, a slime layer of Ag particles that adhered to the surface was generated during the dissolution of the Cu-5 wt pct Ag anode. The Cu-5 wt pct Ag anode was passivated with a lower current density than the pure Cu anode, which suggested that the morphology and adhesive characteristics of the slime on the anode affected the passivation. The direct observation method described herein is useful for understanding reactions on electrodes that undergo drastic changes in their surface morphology. Information obtained from this method can help with the development of new processes for the effective utilization of limited natural resources and energy, such as the recycling of Cu by electrorefining.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. 1. J. Hait, R. K. Jana and S. K. Sanyal: Miner. Process. Extr. Metall., 2009, vol. 118, pp. 240-252.

    Article  Google Scholar 

  2. 2. S. Abe, B. W. Burrows and V. A. Ettel: Can. Metall. Quart., 1980, vol. 19, pp. 289-296.

    Article  Google Scholar 

  3. 3. F. Noguchi, Y. Iida, T. Nakamura and Y. Ueda: J. Min. Metall. Inst. Jpn., 1991, vol. 107, pp. 569-575.

    Google Scholar 

  4. 4. M. Bounounghaz, M. Manzini and E. Ghali: Can. Metall. Quart., 1995, vol. 34, pp. 21-26.

    Article  Google Scholar 

  5. 5. Z. H. Gu, J. Chen and T. Z. Fahidy: Hydrometallurgy, 1995, vol. 37, pp. 149-167.

    Article  Google Scholar 

  6. 6. C. A. Möller, M. Bayanmunkh and B. Friedrich: World of Metallurgy - ERZMETALL, 2008, vol. 61, pp. 357-367.

    Google Scholar 

  7. 7. W. Zeng, S. Wang and M. L. Free: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 3178-3191.

    Article  Google Scholar 

  8. 8. S. Abe and S. Goto: J. Min. Metall. Inst. Jpn., 1981, vol. 97, pp. 951-956.

    Google Scholar 

  9. 9. S. Abe and S. Goto: J. Min. Metall. Inst. Jpn., 1981, vol. 97, pp. 1193-1198.

    Google Scholar 

  10. 10. X. Cheng and J. B. Hiskey: Metall. Mater. Trans. B, 1996, vol. 27B, pp. 610-616.

    Article  Google Scholar 

  11. 11. J. B. Hiskey and X. Cheng: Metall. Mater. Trans. B, 1998, vol. 29B, pp. 53-58.

    Article  Google Scholar 

  12. 12. M. S. Moats and J. B. Hiskey: Can. Metall. Quart., 2000, vol. 39, pp. 297-306.

    Article  Google Scholar 

  13. 13. M. S. Moats, J. B. Hiskey and D. W. Collins: Hydrometallurgy, 2000, vol. 56, pp. 255-268.

    Article  Google Scholar 

  14. 14. M. O. Ilkhchi, H. Yoozbashizadeh and M. S. Safarzadeh: Chem. Eng. Process., 2007, vol. 46, pp. 757-763.

    Article  Google Scholar 

  15. 15. M. Palaniappa, M. Jayalakshmi, P. M. Prasad and K. Balasubramanian: Int. J. Electrochem. Sci., 2008, vol. 3, pp. 452-461.

    Google Scholar 

  16. 16. A.-M. Lafront, F. Safizadeh, E. Ghali and G. Houlachi: Electrochim. Acta, 2010, vol. 55, pp. 2505-2512.

    Article  Google Scholar 

  17. 17. F. Safizadeh and E. Ghali: Electrochim. Acta, 2010, vol. 56, pp. 93-101.

    Article  Google Scholar 

  18. 18. X. Cheng and J. B. Hiskey: Metall. Mater. Trans. B, 1996, vol. 27B, pp. 393-398.

    Article  Google Scholar 

  19. 19. Y. Konishi, Y, Nakamura, Y. Fukunaka, K. Tsukada and K. Hanasaki: Electrochim. Acta, 2003, vol. 48, pp. 2615-2624.

    Article  Google Scholar 

  20. 20. E. A. Kucharska-Giziewicz and D. J. Mackinnon: J. Appl. Electrochem., 1996, vol. 26, pp.51-57.

    Article  Google Scholar 

  21. 21. G. Jarjoura and G. J. Kipouros: Can. Metall. Quart., 2005, vol. 44, pp. 469-482.

    Article  Google Scholar 

  22. 22. G. Jarjoura and G. J. Kipouros: J. Appl. Electrochem., 2006, vol. 36, pp. 691-701.

    Article  Google Scholar 

  23. 23. T. T. Chen and J. E. Dutrizac: Metall. Trans. B, 1989, vol. 20, pp. 345-361.

    Article  Google Scholar 

  24. 24. S. Northey, S. Mohr, G. M. Mudd, Z. Weng and D. Giurco: Resour. Conserv. Recy., 2014, vol. 83, pp. 190-201.

    Article  Google Scholar 

  25. 25. B. H. Robinson: Sci. Total Environ., 2009, vol. 408, pp. 183-191.

    Article  Google Scholar 

  26. 26. A. Anindya, D. R. Swinbourne, M. A. Reuter and R. W. Matusewicz: Miner. Process. Extr. Metall., 2013, vol. 122, pp. 165-173.

    Article  Google Scholar 

  27. 27. M. Ghodrat, M. A. Rhamdhani, G. Brooks, S. Masood and G. Corder: J. Clean. Prod., 2016, vol. 126, pp. 178-190.

    Article  Google Scholar 

  28. H. Matsushima, H. Yatsuhashi, S. Kato, H. Nakano, S. Oue, T. Kamiya, H. Metsugi, H. Takiguchi and Y. Abe: Proceedings of the 9th International Copper Conference, 2016, Vol. 4 Electrowinning and Electrorefining, pp. 115–26.

  29. 29. W. Zeng, S. Wang and M. L. Free: J. Electrochem. Soc., 2017, vol. 164, pp. E233-241.

    Article  Google Scholar 

  30. 30. T. Tsuru: Mat. Sci. Eng. A, 1991, vol. 146, pp. 1-14.

    Article  Google Scholar 

  31. 31. E. O. Barnes, G. E. M. Lewis, S. E. C. Dale, F. Marken and R. G. Compton: Analyst, 2012, vol. 137, pp. 1068-1081.

    Article  Google Scholar 

  32. 32. A. Nishikata, M. Itagaki, T. Tsuru and S. Haruyama: Corr. Sci., 1990, vol. 31, pp. 287-292.

    Article  Google Scholar 

  33. 33. M. Itagaki, M. Tagaki, T. Mori and K. Watanabe: Corr. Sci., 1996, vol. 38, pp. 601-610.

    Article  Google Scholar 

  34. 34. M. Itagaki, M. Tagaki, T. Mori and K. Watanabe: Corr. Sci., 1996, vol. 38, pp. 1109-1125.

    Article  Google Scholar 

  35. 35. M. Itagaki, T. Mori and K. Watanabe: Corr. Sci., 1999, vol. 41, pp. 1955-1970.

    Article  Google Scholar 

  36. 36. Y. Ninomiya, H. Sasaki and M. Maeda: Proc. MMIJ Annual Meeting, 2015, vol. 2, No. 2, [1802].

  37. 37. Y. Hoshi, T. Oda, I. Shitanda and M. Itagaki: J. Electrochem. Soc., 2017, vol. 164, pp. C450-452.

    Article  Google Scholar 

  38. T. Oda, Y. Hoshi, I. Shitanda, and M. Itagaki: Proc. JSCE Materials and Environments 2016, 2016, pp. 347–48.

  39. M. Pourbaix: Atlas of Electrochemical Equilibria in Aqueous Solutions, English ed., Pergamon Press Ltd., London, 1966, pp. 385–87, 394–96.

  40. 40. H. Matsuda: J. Electroanal. Chem. Interfacial Electrochem., 1968, vol. 16, pp. 153-164.

    Google Scholar 

  41. E. Mattson and J. O’M. Bockris: Trans. Faraday Soc., 1959, vol. 55, pp. 1586–1601.

  42. 42. R. P. Elliott, F. A. Shunk and W. C. Giessen: Bull. of Alloy Phase Diagr., 1980, vol. 1, pp. 41-45.

    Article  Google Scholar 

  43. 43. S. Nagakura, S. Toyama and S. Oketani: Acta. Metall., 1966, vol. 14, pp. 73-75.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to express our gratitude to Professor T. H. Okabe (Institute of Industrial Science, The University of Tokyo) for his advice on composing the manuscript and Mr. H. Kimura (The University of Tokyo) for technical assistance with the experiments. This study is a part of a research project by the Agency for Natural Resources and Energy. The authors are grateful for the financial support and advice on our experimental design from the Japan Oil, Gas and Metals National Corporation (JOGMEC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuma Ninomiya.

Additional information

Manuscript submitted July 20, 2018.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 15590 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ninomiya, Y., Sasaki, H., Yoshikawa, T. et al. Direct Observation of Pure Cu and Cu-Ag Anode Passivation in H2SO4-CuSO4 Aqueous Solution by Channel Flow Double Electrode and Optical Microscopy. Metall Mater Trans B 50, 407–415 (2019). https://doi.org/10.1007/s11663-018-1447-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1447-9

Keywords

Navigation