Skip to main content
Log in

Experimental Studies of the Effects of Anode Composition and Process Parameters on Anode Slime Adhesion and Cathode Copper Purity by Performing Copper Electrorefining in a Pilot-Scale Cell

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Copper electrorefining tests were conducted in a pilot-scale cell under commercial tankhouse environment to study the effects of anode compositions, current density, cathode blank width, and flow rate on anode slime behavior and cathode copper purity. Three different types of anodes (high, mid, and low impurity levels) were used in the tests and were analyzed under SEM/EDS. The harvested copper cathodes were weighed and analyzed for impurities concentrations using DC Arc. The adhered slimes and released slimes were collected, weighed, and analyzed for compositions using ICP. It was shown that the lead-to-arsenic ratio in the anodes affects the sintering and coalescence of slime particles. High current density condition can improve anode slime adhesion and cathode purity by intensifying slime particles’ coalescence and dissolving part of the particles. Wide cathode blanks can raise the anodic current densities significantly and result in massive release of large slime particle aggregates, which are not likely to contaminate the cathode copper. Low flow rate can cause anode passivation and increase local temperatures in front of the anode, which leads to very intense sintering and coalescence of slime particles. The results and analyses of the tests present potential solutions for industrial copper electrorefining process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Michael L. Free: Hydrometallurgy: Fundamentals and Applications, John Wiley & Sons, Inc., Hoboken, NJ, 2013, pp. 229-232.

    Book  Google Scholar 

  2. W. Zeng, M. L. Free, and S. Wang: J. Electrochem. Soc., 2016, vol. 163, pp. E14-E31.

    Article  Google Scholar 

  3. W. Zeng, J. Werner, and M. L. Free: Hydrometallurgy, 2015, vol. 156, pp. 232-238.

    Article  Google Scholar 

  4. W. Zeng, M. L. Free, J. Werner, and S. Wang: J. Electrochem. Soc., 2015, vol. 162, pp. E338-E352.

    Article  Google Scholar 

  5. W. Zeng, S. Wang, M. L. Free: J. Electrochem. Soc., 2016, vol. 163, pp. E111-E122.

    Article  Google Scholar 

  6. T. T. Chen and J. E. Dutrizac: JOM, 1990, vol. 42, pp. 39-44.

    Article  Google Scholar 

  7. T. T. Chen and J. E. Dutrizac: Can. Metall. Q., 1988, vol. 27, pp. 91-96.

    Article  Google Scholar 

  8. T. T. Chen and J. E. Dutrizac: Can. Metall. Q., 1990, vol. 29, pp. 27-37.

    Article  Google Scholar 

  9. T. T. Chen and J. E. Dutrizac: Can. Metall. Q., 1989, vol. 28, pp. 127-134.

    Article  Google Scholar 

  10. T. T. Chen and J. E. Dutrizac: Can. Metall. Q., 1991, vol. 30, pp. 95-106.

    Article  Google Scholar 

  11. T. T. Chen and J. E. Dutrizac: Metall. Mater. Trans. B, 2005, vol. 36, pp. 229-240.

    Article  Google Scholar 

  12. T. T. Chen and J. E. Dutrizac: Can. Metall. Q., 1988, vol. 27, pp. 97-105.

    Article  Google Scholar 

  13. J. D. Scott: Metall. Trans. B, 1990, vol. 21, pp. 629-635.

    Article  Google Scholar 

  14. T. T. Chen and J. E. Dutrizac: Metall. Trans. B, 1989, vol. 20, pp. 345-361.

    Article  Google Scholar 

  15. X. Cheng and J. B. Hiskey: Metall. Mater. Trans. B, 1996, vol. 27, pp. 610-616.

    Article  Google Scholar 

  16. J. B. Hiskey: TT Chen Honorary Symposium on Hydrometallurgy, Electrometallurgy and Materials Characterization, TMS, John Wiley & Sons, Inc., Hoboken, NJ, 2012, pp. 101-112.

    Book  Google Scholar 

  17. X. Wang, Q. Chen, Z. Yin, M. Wang, B. Xiao, and F. Zhang: Hydrometallurgy, 2011, vol. 105, pp. 355-358.

    Article  Google Scholar 

  18. F. X. Xiao, Y. J. Zheng, Y. Wang, W. Xu, C. H. Li, and H. S. Jian: Trans. Nonferrous Met. Soc. China, 2007, vol. 15, pp. 1069-1074.

    Article  Google Scholar 

  19. S. Wang, D. Kim, and M. Moats: Proceedings of Copper 2013, vol. 5, pp. 577-594.

    Google Scholar 

  20. M. Moats, S. Wang, and D. Kim: TT Chen Honorary Symposium on Hydrometallurgy, Electrometallurgy and Materials Characterization, TMS, John Wiley & Sons, Inc., Hoboken, NJ, 2012, pp. 3-21.

    Google Scholar 

  21. C. A. Moller and B. Friedrich: Proceedings of Copper 2010, vol. 4, pp. 1495-1510.

    Google Scholar 

  22. J. E. Hoffmann: JOM, 2004, vol. 56, pp. 30-33.

    Article  Google Scholar 

  23. S. Wang: JOM, 2004, vol. 56, pp. 34-37.

    Article  Google Scholar 

  24. Michael L. Free: Hydrometallurgy: Fundamentals and Applications, John Wiley & Sons, Inc., Hoboken, NJ, 2013, pp. 218-228.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weizhi Zeng.

Additional information

Manuscript submitted April 1, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, W., Wang, S. & Free, M.L. Experimental Studies of the Effects of Anode Composition and Process Parameters on Anode Slime Adhesion and Cathode Copper Purity by Performing Copper Electrorefining in a Pilot-Scale Cell. Metall Mater Trans B 47, 3178–3191 (2016). https://doi.org/10.1007/s11663-016-0736-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0736-4

Keywords

Navigation