Skip to main content
Log in

Conventional vs. Temperature-Gradient Transient Liquid Phase Bonding of Stainless Steel 304 Using a Multi-component (Fe–Ni–Mo–B) Filler Metal

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The application of the multi-component Fe-based filler metals (FMs) for transient liquid phase (TLP) bonding of AISI 304 austenitic stainless steel has been overshadowed by dissimilar interlayers merely due to their shorter isothermal solidification time. However, the latter usually suffers from low efficiency in terms of mechanical properties even after homogenization of heat treatment. This study shows that by imposing a temperature gradient across the bond line during the TLP bonding process (TG-TLP), it is possible to reduce the isothermal solidification time significantly. This renews the interest in utilizing multi-component Fe-based FMs. In this regard, the TG-TLP bonding process was carried out on the AISI 304/Fe–Ni–Mo–B/AISI 304 system at different holding times and compared to those of the conventional TLP (C-TLP) bonding case. Results revealed that the TG-TLP bonding scenario benefits from a fast isothermal solidification, making that the implementation of the multi-component Fe-based FMs is cost and time effective. Moreover, the absence of the boride precipitates in the diffusion-affected zone (DAZ) of the base material (BM), along with the formation of a joint region with a chemical composition comparable to that of the BM, eliminates the need for homogenization post-processing. These features of the TG-TLP bonding process, in tandem with a non-planar interface, led to a joint with shear strength efficiency of 100 pct fractured from the BM. The lessons learned from the explored fast isothermal solidification mechanism and lack of boride formation phenomenon in the DAZ can also be applied to the TG-TLP bonding of other steels and Ni-based superalloys.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. W.D. MacDonald and T.W. Eagar: Annu. Rev. Mater. Sci., 1992, vol. 22, pp. 23–46.

    Article  CAS  Google Scholar 

  2. D.S. Duvall, W.A. Owczarski, and D.F. Paulonis: Weld. J. (NY), 1974, vol. 53, pp. 203–14.

    CAS  Google Scholar 

  3. A. Ghasemi and M. Pouranvari: Mater. Des., 2019, vol. 182, p. 108008.

    Article  CAS  Google Scholar 

  4. W.F. Gale and D.A. Butts: Sci. Technol. Weld. Join., 2004, vol. 9, pp. 283–300.

    Article  CAS  Google Scholar 

  5. D.F. Paulonis, D.S. Duvall, and W.A. Owczarski: Google Patents, 1972.

  6. J.C. Barone and R.E. Page: Google Patents, 2009.

  7. X. Wu, R.S. Chandel, and H. Li: J. Mater. Sci., 2001, vol. 36, pp. 1539–46.

    Article  CAS  Google Scholar 

  8. B. Rhee, S. Roh, and D. Kim: Mater. Trans., 2003, vol. 44, pp. 1014–23.

    Article  CAS  Google Scholar 

  9. X. Yuan, M.B. Kim, and C.Y. Kang: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 1310–24.

    Article  Google Scholar 

  10. H.M. Hdz-García, A.I. Martinez, R. Muñoz-Arroyo, J.L. Acevedo-Dávila, F. García-Vázquez, and F.A. Reyes-Valdes: J. Mater. Sci. Technol., 2014, vol. 30, pp. 259–62.

    Article  Google Scholar 

  11. A. Ghasemi and M. Pouranvari: Sci. Technol. Weld. Join., 2019, vol. 24, pp. 342–51.

    Article  CAS  Google Scholar 

  12. A. Ghasemi and M. Pouranvari: Sci. Technol. Weld. Join., 2018, vol. 23, pp. 441–48.

    Article  CAS  Google Scholar 

  13. J.T. Stover: ERPI, Palo Alto, CA, 2003, vol. 1005029.

  14. Y. Zhou, W.F. Gale, and T.H. North: Int. Mater. Rev., 1995, vol. 40, pp. 181–96.

    Article  CAS  Google Scholar 

  15. A. Ghasemi and M. Pouranvari: Metall. Mater. Trans. A, 2019, vol. 50A, pp. 2235–45.

    Article  Google Scholar 

  16. C.W. Sinclair: J. Phase Equilib., 1999, vol. 20, p. 361.

    Article  CAS  Google Scholar 

  17. C.W. Sinclair, G.R. Purdy, and J.E. Morral: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 1187–92.

    Article  CAS  Google Scholar 

  18. O.J. Adebajo and O.A. Ojo: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 26–33.

    Article  Google Scholar 

  19. M. Pouranvari, A. Ekrami, and A.H. Kokabi: Mater. Sci. Eng. A, 2013, vol. 568, pp. 76–82.

    Article  CAS  Google Scholar 

  20. S. Şahin and M. Übeyli: J. Fusion Energy, 2008, vol. 27, pp. 271–77.

    Article  Google Scholar 

  21. A. Bahrami, S.H. Mousavi Anijdan, P. Taheri, and M. Yazdan Mehr: Eng. Fail. Anal., 2018, vol. 90, pp. 397–403.

    Article  CAS  Google Scholar 

  22. D.J. Kemmenoe, E.A. Theisen, and S.P. Baker: Metall. Mater. Trans. A, 2021, vol. 52A, pp. 1–25.

    Google Scholar 

  23. D.G.W. Claydon and A. Sugihara: Report No. 0148-7191, SAE Technical Paper 1983.

  24. M. Hosseini, A. Ghasemi, and M. Pouranvari: Metall. Mater. Trans. A, 2020, vol. 51A, pp. 5715–24.

    Article  Google Scholar 

  25. Y. Cormier, P. Dupuis, B. Jodoin, and A. Corbeil: J. Therm. Spray Technol., 2016, vol. 25, pp. 170–82.

    Article  CAS  Google Scholar 

  26. M.A. Balbaa, A. Ghasemi, E. Fereiduni, M.A. Elbestawi, S.D. Jadhav, and J.-P. Kruth: Addit. Manuf., 2020, vol. 37, p. 101630.

    Google Scholar 

  27. A. Ghasemi, E. Fereiduni, M. Balbaa, S.D. Jadhav, M. Elbestawi, and S. Habibi: Addit. Manuf., 2021, vol. 46, p. 102145.

    CAS  Google Scholar 

  28. A. Kazazi and A. Ekrami: J. Manuf. Process., 2019, vol. 42, pp. 131–38.

    Article  Google Scholar 

  29. M. Sadeghian, A. Ekrami, and R. Jamshidi: Sci. Technol. Weld. Join., 2017, vol. 22, pp. 666–72.

    Article  CAS  Google Scholar 

  30. M. Mohammadi and A. Ekrami: J. Mater. Process. Technol., 2020, vol. 275, p. 116276.

    Article  CAS  Google Scholar 

  31. M.-C. Liu, G.-M. Sheng, H.-J. He, and Y.-J. Jiao: J. Mater. Process. Technol., 2017, vol. 246, pp. 245–51.

    Article  CAS  Google Scholar 

  32. N.P. Wikstrom, O.A. Ojo, and M.C. Chaturvedi: Mater. Sci. Eng. A, 2006, vol. 417, pp. 299–306.

    Article  Google Scholar 

  33. N. Di Luozzo, M. Fontana, and B. Arcondo: J. Mater. Sci., 2007, vol. 42, pp. 4044–50.

    Article  Google Scholar 

  34. W. Guo, H. Wang, Q. Jia, P. Peng, and Y. Zhu: High Temp. Mater. Process. (Lond.), 2017, vol. 36, pp. 677–82.

    Article  CAS  Google Scholar 

  35. W. Li, T. Jin, X.F. Sun, Y. Guo, H.R. Guan, and Z.Q. Hu: Scripta Mater., 2003, vol. 48, pp. 1283–88.

    Article  CAS  Google Scholar 

  36. H. Assadi, A.A. Shirzadi, and E.R. Wallach: Acta Mater., 2001, vol. 49, pp. 31–39.

    Article  CAS  Google Scholar 

  37. A.A. Shirzadi and E.R. Wallach: Sci. Technol. Weld. Join., 1997, vol. 2, pp. 89–94.

    Article  CAS  Google Scholar 

  38. M.A. Jabbareh and H. Assadi: Scripta Mater., 2009, vol. 60, pp. 780–82.

    Article  CAS  Google Scholar 

  39. O.E. Bamidele and O.A. Ojo: Metall. Mater. Trans. A., 2021, vol. 52A, pp. 2261–73.

    Article  Google Scholar 

  40. A. Ghobadi Bigvand and O.A. Ojo: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 1670–74.

    Article  Google Scholar 

  41. A.A. Shirzadi and E.R. Wallach: Acta Mater., 1999, vol. 47, pp. 3551–60.

    Article  CAS  Google Scholar 

  42. T.L. Yang, T. Aoki, K. Matsumoto, K. Toriyama, A. Horibe, H. Mori, Y. Orii, J.Y. Wu, and C.R. Kao: Acta Mater., 2016, vol. 113, pp. 90–97.

    Article  CAS  Google Scholar 

  43. S.H. Kim, H.K. Moon, T. Kang, and C.S. Lee: Mater. Sci. Eng. A, 2003, vol. 356, pp. 390–98.

    Article  Google Scholar 

  44. D. Goldberg and G.R. Belton: Metall. Mater. Trans. B, 1974, vol. 5B, pp. 1643–48.

    Article  Google Scholar 

  45. J.K. Stanley and A.J. Perrotta: Metallography, 1969, vol. 2, pp. 349–62.

    Article  CAS  Google Scholar 

  46. D.R. Askeland, P.P. Fulay, and W.J. Wright: The Science and Engineering of Materials, 6th ed., Springer, New York, 2010.

  47. B.H. Armstrong: Int. J. Thermophys., 1992, vol. 13, pp. 489–98.

    Article  CAS  Google Scholar 

  48. W.F. Gale and E.R. Wallach: Metall. Trans. A, 1991, vol. 22, pp. 2451–57.

    Article  Google Scholar 

  49. M. Pouranvari, A. Ghasemi, and A. Salmasi: Metall. Mater. Trans. A, 2022, vol. 53A, pp. 126–35.

    Article  Google Scholar 

  50. P.E. Busby, M.E. Warga, and C. Wells: JOM, 1953, vol. 5, pp. 1463–68.

    Article  CAS  Google Scholar 

  51. A. Nicolaÿ, J.-M. Franchet, J. Cormier, R.E. Logé, G. Fiorucci, J. Fausty, M. Van Der Meer, and N. Bozzolo: Metall. Mater. Trans. A, 2021, vol. 52A, pp. 4572–96.

    Article  Google Scholar 

  52. J. Lentz, A. Röttger, F. Großwendt, and W. Theisen: Mater. Des., 2018, vol. 156, pp. 113–24.

    Article  CAS  Google Scholar 

  53. Y. Li, Y. Gao, B. Xiao, T. Min, Y. Yang, S. Ma, and D. Yi: J. Alloys Compd., 2011, vol. 509, pp. 5242–49.

    Article  CAS  Google Scholar 

  54. J.C. Lippold and D.J. Kotecki: Welding Metallurgy and Weldability of Stainless Steels, Wiley, Hoboken, 2005.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Sharif University of Technology’s financial support for this research.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzin Jabbari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jabbari, F., Ekrami, A. Conventional vs. Temperature-Gradient Transient Liquid Phase Bonding of Stainless Steel 304 Using a Multi-component (Fe–Ni–Mo–B) Filler Metal. Metall Mater Trans A 53, 4081–4100 (2022). https://doi.org/10.1007/s11661-022-06817-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06817-9

Navigation