Skip to main content

Advertisement

Log in

Evaluation of the microstructures and mechanical properties of AISI2205 stainless steel TLP joints using BNI-3 filler metal

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

In the present study, progress of isothermal solidification (IS) and microstructural variations in the transient liquid phase (TLP) bonded area of 2205DSS/BNi-3/2205DSS assembly were studied experimentally and analytically. TLP bonding was carried out at 1170 \(^\circ{\rm C}\) for different bonding time, 1–40 min. FESEM and XRD analysis revealed that the IS was progressed from the bonding zone/base metal (BZ/BM) interface to the BZ centerline via isothermal formation of a Ni-based solid solution phase (\(\gamma\)-Ni). Cooling the TLP-bonded specimens before completion of IS resulted in a non-isothermal (athermal) solidification of the residual liquid along BZ centerline via L → γ + {(Mo,Cr) borides} eutectic transformation. The formation of the eutectic constituents in the bonding centerline reduced the shear strength of the TLP-bonded specimen significantly. After completion of the IS, the shear strength of TLP-bonded specimen was increased to 450 MPa that was more than 77% of BM strength. Furthermore, the pitting corrosion resistance of TLP-bonded specimen was increased from − 0.105 V to − 0.030 V after completing the IS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Olsson J, Snis M (2007) Duplex - a new generation of stainless steels for desalination plants. Desalination 205:104–113. https://doi.org/10.1016/j.desal.2006.02.051

    Article  CAS  Google Scholar 

  2. Nilsson JO (1992) Super duplex stainless steels. Mater Sci Technol 8:685–700. https://doi.org/10.1179/mst.1992.8.8.685

    Article  CAS  Google Scholar 

  3. Hong SH, Han YS (2000) Phenomena and mechanism on superplasticity of stainless steels. Met Mater 6:161–167. https://doi.org/10.1007/BF03026361

    Article  CAS  Google Scholar 

  4. Holmquist M (2001) Consider duplex stainless steels for corrosive exchangers’s service. Hydrocarb Process 80:65

    CAS  Google Scholar 

  5. Nowacki J, Zajac P (2012) Mechanical properties of duplex steel welded joints in large-size constructions. Weld Int 26:424–435. https://doi.org/10.1080/09507116.2011.581345

    Article  Google Scholar 

  6. Azqadan E, Ekrami A (2017) Transient liquid phase bonding of dual phase steels using Fe-based, Ni-based and pure Cu interlayers. J Manuf Process 30:106–115. https://doi.org/10.1016/j.jmapro.2017.09.006

    Article  Google Scholar 

  7. Liou HY, Hsieh RI, Tsai WT (2002) Microstructure and pitting corrosion in simulated heat-affected zones of duplex stainless steels. Mater Chem Phys 74:33–42. https://doi.org/10.1016/S0254-0584(01)00409-6

    Article  CAS  Google Scholar 

  8. Xavier CR, Junior HGD, Castro JA (2015) An experimental and numerical approach for the welding effects on the duplex stainless steel microstructure. Mater Res 18:489–502. https://doi.org/10.1590/1516-1439.302014

    Article  CAS  Google Scholar 

  9. Libra O (1994) Welding 22Cr5Ni3Mo corrosion-resistant dual-phase steel. Weld Int 8:245–248. https://doi.org/10.1080/09507119409548584

    Article  Google Scholar 

  10. Walker RA, Gooch TG (1991) Pitting resistance of weld metal for 22Cr-5Ni ferritic-austenitic stainless steels. Br Corros J 26:51–59. https://doi.org/10.1179/000705991798269431

    Article  CAS  Google Scholar 

  11. Cook GO, Sorensen CD (2011) Overview of transient liquid phase and partial transient liquid phase bonding. J Mater Sci 46:5305–5323. https://doi.org/10.1007/s10853-011-5561-1

    Article  CAS  Google Scholar 

  12. Miglietti W (1993) Correlation between microstructure and mechanical of diffusion brazed Mar-M247. ASME 1993 International Gas Turbine and Aeroengine Congress and Exposition. Volume 3B: General. https://doi.org/10.1115/93-GT-295

  13. Mosallaee M, Ekrami A, Ohsasa K, Matsuura K (2008) Microstructural evolution in the transient-liquid-phase bonding area of IN-738LC/BNi-3/IN-738LC. Metall and Mater Trans A 39:2389–2402. https://doi.org/10.1007/s11661-008-9588-0

    Article  CAS  Google Scholar 

  14. Jalilian F, Jahazi M, Drew RAL (2013) Microstructure evolution during transient liquid phase bonding of alloy 617. Metallography Microst Anal 2:170–182. https://doi.org/10.1007/s13632-013-0070-z

    Article  CAS  Google Scholar 

  15. Wu X, Chandel RS, Li H (2001) Evaluation of transient liquid phase bonding between nickel-based superalloys. J Mater Sci 36:1539–1546. https://doi.org/10.1023/A:1017513200502

    Article  CAS  Google Scholar 

  16. Kapoor M, Doğan ÖN, Carney CS, Saranam RV, McNeff P, Paul BK (2017) Transient-liquid-phase bonding of H230 Ni-based alloy using Ni-P interlayer: microstructure and mechanical properties. Metall and Mater Trans A 48:3343–3356. https://doi.org/10.1007/s11661-017-4127-5

    Article  CAS  Google Scholar 

  17. Yuan XJ, Kang CY (2013) Microstructural developments and precipitate transformation during transient liquid-phase bonding of a duplex stainless steel. Journal of Central South University 20:15–23. https://doi.org/10.1007/s11771-013-1453-7

    Article  CAS  Google Scholar 

  18. Khan TI, Orhan N, Eroglu M (2002) Transient liquid phase bonding of a microduplex stainless steel using amorphous interlayers. Mater Sci Technol 18:396–400. https://doi.org/10.1179/026708302225001697

    Article  CAS  Google Scholar 

  19. Roh S, Lee C, Rhee B (2018) Effects of austenite regeneration heat treatment on the TLP bonding of duplex stainless steel UNS S32750 using Fe-B-Si insert metal. Mater Chem Phys 207:402–411. https://doi.org/10.1016/j.matchemphys.2017.11.019

    Article  CAS  Google Scholar 

  20. Bhattacharya A (2007) Stress corrosion cracking of duplex stainless steels in caustic solutions. J Fail Anal Prev 7:371–377. https://doi.org/10.1007/s11668-007-9069-6

    Article  Google Scholar 

  21. Kashiwar A, Vennela N, Kamath SL, Kathirkar RK (2012) Effect of solution annealing temperature on precipitation on 2205 duplex stainless steel. Mater Charact 74:55–63. https://doi.org/10.1016/j.matchar.2012.09.008

    Article  CAS  Google Scholar 

  22. Topolska S, Labanowski J (2009) Effect of microstructure on impact toughness of duplex and superduplex stainless steels. J Achiev Mater Manufact Eng 36:142–149

    Google Scholar 

  23. Lo KH, She CH, Lai JKL (2009) Recent developments in stainless steels, Material Science Engineering. Mater Sci Eng R Rep 65:39–104. https://doi.org/10.1016/j.mser.2009.03.001

    Article  CAS  Google Scholar 

  24. Petrovicˇ DS, Pirnat M (2012) The effect of cooling rate on the solidification and microstructure evolution in duplex stainless steel: a DSC study. J Therm Anal Calorim 109:1185–1191. https://doi.org/10.1007/s10973-012-2370-y

    Article  CAS  Google Scholar 

  25. de Lacerda JC, Cândido LC, Godefroid LB (2015) Effect of volume fraction of phases and precipitates on the mechanical behavior of UNS S31803 duplex stainless steel. Int J Fatigue 74:81–87. https://doi.org/10.1016/j.ijfatigue.2014.12.015

    Article  CAS  Google Scholar 

  26. Rhee B, Roh S, Kim D (2003) Transient liquid phase bonding of nitrogen containing duplex stainless steel UNS S31803 using Ni–Cr–Fe–Si–B insert metal. Mater Trans 44:1014–1023. https://doi.org/10.2320/matertrans.44.1014

    Article  CAS  Google Scholar 

  27. Yuan XJ, Kangm CY (2011) Effects of boron and silicon on microstructure and isothermal solidification during TLP bonding of a duplex stainless steel using two Ni-Si-B insert alloys. Mater Sci Technol 27:1191–1197. https://doi.org/10.1179/026708310X12668415533847

    Article  CAS  Google Scholar 

  28. Pouranvari M (2014) Isothermal solidification during transient liquid-phase bonding of GTD-111/Ni-Si-B/GTD-111. Mater Technol 48:113–118

    CAS  Google Scholar 

  29. Mosallaee M (2008) Optimizing the transient liquid phase bonding condition of IN-738LC and the effect of bonding parameters on microstructure and mechanical properties of bond. Sharif university of technology, Tehran

    Google Scholar 

  30. Zhou Y, Gale WF, North TH (1995) Modelling of transient liquid phase bonding. Int Mater Rev 40:181–196. https://doi.org/10.1179/imr.1995.40.5.181

    Article  CAS  Google Scholar 

  31. Massalski TB (1991) Binary alloy phase diagrams –second edition. ASM Int 3:628–629. https://doi.org/10.1002/adma.19910031215

    Article  Google Scholar 

  32. Flemings MC (1974) Solidification processing. Metallurgical. Transactions 5:2121–2134. https://doi.org/10.1007/BF02643923

    Article  CAS  Google Scholar 

  33. Kurz W, Fisher DJ (1998) Fundamentals of solidification: 4th edition. Materials Science. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/RC.35

  34. Roh S, Lee C (2019) Formation of secondary phases and their effect on the mechanical properties of joints formed by TLP bonding using Fe–B–Si insert metal in duplex stainless steel. Met Mater Int 25:425–438. https://doi.org/10.1007/s12540-018-0186-4

    Article  CAS  Google Scholar 

  35. Kubaschewski O, Alcock CB (1980) Metallurgical thermochemistry: 5th edition. Endeavour 4:86. https://doi.org/10.1016/0160-9327(80)90154-4

  36. Krishnavenia K, Narayanana TSNS, Seshadri SK (2005) Electroless Ni–B coatings: preparation and evaluation of hardness and wear resistance. Surf Coat Technol 190:115–121. https://doi.org/10.1016/j.surfcoat.2004.01.038

    Article  CAS  Google Scholar 

  37. Yuan XJ, Kang CY (2009) Characterization of transient-liquid-phase-bonded joints in a duplex stainless steel with a Ni–Cr–B insert alloy. Mater Charact 60:1289–1297. https://doi.org/10.1016/j.matchar.2009.05.012

    Article  CAS  Google Scholar 

  38. Abdolvand R, Atapour M, Shamanian M, Allafchian A (2017) The effect of bonding time on the microstructure and mechanical properties of transient liquid phase bonding between SAF 2507 and AISI 304. J Manuf Process 25:172–218. https://doi.org/10.1016/j.jmapro.2016.11.013

    Article  Google Scholar 

  39. Yuan X, Kim MB, Cho YH, Kang CY (2012) Microstructures, mechanical and chemical properties of TLP-bonded joints in a duplex stainless steel with amorphous Ni-based insert alloys. Miner Metals Mater Soc 43:1989–2001. https://doi.org/10.1007/s11661-011-1031-2

    Article  CAS  Google Scholar 

  40. Fattah-Alhossein A, Attarzadeh N (2010) The mechanism of transpassive dissolution of AISI 321 stainless steel in sulphuric acid solution. Int J Electrochem 2011. https://doi.org/10.4061/2011/521384

  41. Liu LJ (2008) Numerical modeling of galvanic corrosion. University of Windsor, Electronic Theses and Dissertations 8242. https://scholar.uwindsor.ca/etd/8242

  42. Chan KW, Tjong SC (2014) Effect of secondary phase precipitation on the corrosion behavior of duplex stainless steels. Materials 7:5268–5304. https://doi.org/10.3390/ma7075268

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Mosallaee.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Recommended for publication by Commission XVII—Brazing, Soldering and Diffusion Bonding

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beheshti, A., Mosallaee, M. & Babanezhad, A. Evaluation of the microstructures and mechanical properties of AISI2205 stainless steel TLP joints using BNI-3 filler metal. Weld World 66, 995–1008 (2022). https://doi.org/10.1007/s40194-022-01250-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-022-01250-3

Keywords

Navigation