Skip to main content
Log in

High Content of Boride-Forming Elements in IN617 Nickel-Based Superalloy Enables Short Isothermal Solidification Time During Transient Liquid Phase Bonding

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Isothermal solidification stage during transient liquid phase bonding is the key to preclude intermetallic phase formation during solidification of the liquid phase. The rate of isothermal solidification is controlled by solid-state diffusion. Therefore, the bonding time required to complete isothermal solidification is generally long. This paper reports a very short isothermal solidification time for transient liquid phase bonding of IN617 solid solution nickel-based superalloy using a boron-containing filler metal. A eutectic-free bond with limited grain growth in the base material with high shear strength is achievable by utilizing a short (i.e., 5 minutes) thermal bonding strategy. The fast isothermal solidification of IN617 is unveiled by considering the role of in-situ boride precipitation during TLP bonding. The presence of a high amount of boride-forming elements (Cr and Mo) in the base material composition promotes the formation of a high volume fraction of the boride precipitates in the diffusion affected zone. The boron-free regions in the vicinity of boride precipitates cause a steep concentration gradient for boron diffusion during isothermal solidification, which enables fast isothermal solidification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. It is interesting to note that the boride formation reaction is believed to be exothermic.[31] Therefore, the deviation from the nominal bonding temperature may take place locally due to the formation of boride precipitates through exothermic reactions. However, the whole setup can reach to the nominal bonding temperature again as the generated heat can be easily dissipated by the surrounding especially when the size of bonded samples is large. In light of this scenario, it is believed that the isothermal solidification conditions are met during TLP bonding process.

References

  1. M. Mosallaee, A. Ekrami, K. Ohsasa, and K. Matsuura: Metall. Mater. Trans. A, 2008, vol. 39, pp. 2389.

    Article  CAS  Google Scholar 

  2. AG. Bigvand and OA. Ojo: Metall. Mater. Trans. A, 2014, vol. 45, pp. 1670-4.

    Article  Google Scholar 

  3. ED. Moreau and SF. Corbin: Metall. Mater. Trans. A, 2019, vol. 50, pp. 5678–5688.

    Article  Google Scholar 

  4. O.A. Idowu, O.A. Ojo, and M.C. Chaturvedi: Metall. Mater. Trans. A, 2006, vol. 37, pp. 2787-96.

    Article  CAS  Google Scholar 

  5. M. Kapoor, Ö.N. Doğan, C.S. Carney, R.V. Saranam, P. McNeff, and B.K. Paul: Metall. Mater. Trans. A. 2017, vol. 48, pp. 3343-56.

    Article  Google Scholar 

  6. O.A. Idowu, N.L. Richards, and M.C. Chaturvedi: Mater. Sci. Eng. A, 2005, vol. 397, pp. 98-112.

    Article  Google Scholar 

  7. OJ. Adebajo and OA. Ojo: Metall. Mater. Trans. A, 2017, vol. 48, pp. 26-33.

    Article  Google Scholar 

  8. WD. MacDonald and TW. Eagar: Annu. Rev. Mater. Sci., 1992, vol. 22, pp. 23-46.

    Article  CAS  Google Scholar 

  9. D.S. Duvall, W.A. Owczarski, and D.F. Paulonis: Weld. J., 1974, vol. 53, pp. 203-14.

    CAS  Google Scholar 

  10. W.F. Gale and E.R. Wallach: Mater. Sci. Technol., 1991, vol. 7, pp. 1143-1148.

    Article  CAS  Google Scholar 

  11. A. Ghasemi and M. Pouranvari: Metall. Mater. Trans. A, 2019, vol. 50, pp. 2235-2245.

    Article  Google Scholar 

  12. MM. Abdelfatah and OA. Ojo: Metall. Mater. Trans. A, 2009, vol. 40, pp.377-85.

    Article  CAS  Google Scholar 

  13. N. Sheng, J. Liu, T. Jin, X. Sun, and Z. Hu: Metall. Mater. Trans. A, 2015, vol. 46, pp. 5772-81.

    Article  Google Scholar 

  14. A. Ghasemi and M. Pouranvari: Technol. Weld. Joi., 2019, vol. 24, pp. 342-51.

    Article  CAS  Google Scholar 

  15. A. Ghasemi and M. Pouranvari: Sci. Technol. Weld. Joi., 2018, vol. 23, pp.441-8.

    Article  CAS  Google Scholar 

  16. A. Ghasemi and M. Pouranvari: Mater. Des., 2019, vol. 182, pp. 108008.

    Article  CAS  Google Scholar 

  17. M. Pouranvari, A. Ekrami, and A.H. Kokabi: J. Alloy. Compd. 2017, vol. 723, pp. 84-91.

    Article  CAS  Google Scholar 

  18. N.C. Sheng, J.D. Liu, T. Jin, X.F. Sun, and Z.Q. Hu: Metall. Mater. Trans. A, 2013, vol. 44, pp. 1793-804.

    Article  Google Scholar 

  19. N. Sheng, J. Liu, T. Jin, X. Sun, and Z. Hu: Philos. Mag. 2014, vol. 94, pp. 1219-34.

    Article  CAS  Google Scholar 

  20. A. Ghoneim and OA. Ojo: Metall. Mater. Trans. A, 2012, vol. 43, pp. 900-11.

    Article  Google Scholar 

  21. M. Pouranvari, A. Ekrami, and A.H. Kokabi: Sci. Technol. Weld. Joi., 2018, vol. 23, pp. 13-18.

    Article  CAS  Google Scholar 

  22. M. Pouranvari, A. Ekrami, and A.H. Kokabi: Mater. Sci. Eng. A, 2008, vol. 490, pp. 229-34.

    Article  Google Scholar 

  23. WF. Gale and ER. Wallach: Metall. Trans. A, 1991, vol. 22, pp. 2451-7.

    Article  Google Scholar 

  24. F. Jalilian, M. Jahazi, and R.A. Drew: Mater. Sci. Eng. A, 2006, vol. 423, pp. 269-81.

    Article  Google Scholar 

  25. R. B. McLellan, Scripta Metallurgica et Materialia, 1995, vol.33, pp.1265-1267.

    Article  CAS  Google Scholar 

  26. M. Pouranvari, A. Ekrami, and A.H. Kokabi: Weld. J., 2014, vol. 93, pp. 60s-68s.

    Google Scholar 

  27. TB Massalski (ed.) (1986) Binary Alloy Phase Diagrams. Metals Park, OH: ASM.

    Google Scholar 

  28. O.A. Ojo, N.L. Richards, and M.C. Chaturvedi: Sci. Technol. Weld. Joi., 2004, vol. 9, pp. 532–540.

    Article  CAS  Google Scholar 

  29. M. Pouranvari, A. Ekrami, and A.H. Kokabi: Can. Metall. Q., 2014, vol. 53 pp. 38-46.

    Article  CAS  Google Scholar 

  30. Y. Nakao, K. Nishimoto, K. Shinozaki, and C. Kang: Trans. Japan Weld. Soc., 1989, vol. 20, pp. 60-5.

    CAS  Google Scholar 

  31. M. Zhang, H. Wang, H. Wang, T. Cui, and Y. Ma: Journal of Physical Chemistry C, 2010, vol. 114, pp. 6722-5.

    Article  CAS  Google Scholar 

  32. Y. Zhou, W.F. Gale, and T. H. North: Int. Mater Rev., 1992, vol. 40, pp. 181-196.

    Article  Google Scholar 

  33. I.Tuah-Poku, M. Dollar and T.B.Massalaski: Metall. Mater. Trans. A, 1998, vol. 19A, pp. 675-685.

    Google Scholar 

  34. W.D. MacDonald: Kinetics of Transient Liquid Phase Bonding, Doctoral dissertation, Massachusetts Institute of Technology.

  35. D. A. Porter, K. E. Easterling, M. Sherif, Phase Transformations in Metals and Alloys, CRC Press, New York, 2009.

    Google Scholar 

  36. L. Priester, Grain Boundaries: From Theory to Engineering, Springer, Dordrecht, 2013.

    Book  Google Scholar 

  37. M. Pouranvari: Mater. Sci. Technol, 2015, vol. 31, pp. 1773-1780.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This research was supported by Iran National Science Foundation (INSF) under Grant No. 96006047.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Pouranvari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 19, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini, M., Ghasemi, A. & Pouranvari, M. High Content of Boride-Forming Elements in IN617 Nickel-Based Superalloy Enables Short Isothermal Solidification Time During Transient Liquid Phase Bonding. Metall Mater Trans A 51, 5715–5724 (2020). https://doi.org/10.1007/s11661-020-05935-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05935-6

Navigation