Skip to main content
Log in

Microstructural Origin of Residual Stress Relief in Aluminum

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Annealing-induced microstructural evolution and associated stress relief were investigated experimentally for various crystallographic orientations and annealing temperatures. Combinations of the site and orientation-specific X-ray plus electron diffraction were used. 2-D discrete dislocation dynamics, oriented for double slip with both dislocation glide and climb mechanisms, was employed to simulate the annealing process. Irrespective of crystal orientation, both experiments and simulations showed the highest stress relief at the intermediate annealing temperature. In the experiments, this was related to the fastest elimination of low angle grain boundaries. In the simulations, it was linked to the largest reduction in the density of pinned dislocations. The simulations also suggested that the non-monotonic temperature dependence of the stress relief, and associated substructural changes, emerged from a balance between dislocation glide and climb processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Frederick John Humphreys and Max Hatherly: Recrystallization and related annealing phenomena. second ed. (Pergamon Materials Series, Elsevier, Oxford 2004).

    Google Scholar 

  2. B. Verlinden, J. Driver, I. Samajdar and R.D. Doherty: Thermo-mechanical Processing of Metallic Materials. (Elsevier, Oxford, 2007).

    Google Scholar 

  3. B. Bay, N. Hansen, D. A. Hughes and D. Kuhlmann-Wilsdorf, Acta Metallurgica et Materialia 1992, vol. 40, pp. 205-219.

    Article  CAS  Google Scholar 

  4. L.E. Levine, B.C. Larson, W. Yang, M.E. Kassner, J.Z. Tischler, M.A. Delos-Reyes, R.J. Fields, W. Liu, Nat. Mater. 2006, vol. 5, pp. 619-622.

    Article  CAS  Google Scholar 

  5. H. Mughrabi, Acta Metallurgica 1983, vol. 31, pp. 1367-1379.

    Article  CAS  Google Scholar 

  6. A. Lodh, T.N. Tak, A. Prakash, P.J. Guruprasad, C. Hutchinson, I. Samajdar, Metall. Mater. Trans. A 2017, vol. 48, pp. 5317-5331

    Article  Google Scholar 

  7. Q Xing, X Huang and N Hansen, Metallurgical and materials transactions A 2006, vol. 37, pp. 1311-1322.

    Article  CAS  Google Scholar 

  8. E. Nes, Acta Metallurgica et Materialia 1995, vol. 43, pp. 2189-2207.

    Article  CAS  Google Scholar 

  9. D. Raabe: in Physical Metallurgy (Fifth Edition), K. Hono, ed., Elsevier, Oxford, 2014, pp. 2291–2397.

  10. D. Kohli, R. Rakesh, V. P. Sinha, G. J. Prasad and I. Samajdar, Journal of Nuclear Materials 2014, vol. 447, pp. 150-159.

    Article  CAS  Google Scholar 

  11. M. Verdier, F. Bley, M. Janecek, F. Livet, J. P. Simon and Y. Bréchet, Materials Science and Engineering: A 1997, vol. 234-236, pp. 258-262.

    Article  Google Scholar 

  12. P. J. Withers and H. K. D. H. Bhadeshia, Materials Science and Technology 2001, vol. 17, pp. 366-375.

    Article  CAS  Google Scholar 

  13. M.B. Bever, D.L. Holt, A. L. Titchener, Prog. Mater Sci. 1973, vol. 17, pp. 5-177.

    Article  Google Scholar 

  14. M Verdier, I Groma, L Flandin, J Lendvai, Y Bréchet and P Guyot, Scripta Materialia 1997, vol. 37, pp. 449-454.

    Article  CAS  Google Scholar 

  15. M. Verdier, M. Janecek, Y. Bréchet and P. Guyot, Materials Science and Engineering: A 1998, vol. 248, pp. 187-197.

    Article  Google Scholar 

  16. M. B Prime, M. R Hill, Scripta Mater. 2002, vol. 46, pp. 77-82.

    Article  CAS  Google Scholar 

  17. M. Verdier, Y. Brechet and P. Guyot, Acta Materialia 1998, vol. 47, pp. 127-134.

    Article  Google Scholar 

  18. SK Shekhawat, V Basavaraj, VD Hiwarkar, R Chakrabarty, J Nemade, PJ Guruprasad, KG Suresh, RD Doherty and I Samajdar, Metallurgical and Materials Transactions A 2014, vol. 45, pp. 3695-3698.

    Article  Google Scholar 

  19. K Wierzbanowski, A Baczmański, R Wawszczak, J Tarasiuk, Ph Gerber, B Bacroix and A Lodini, Materials science and technology 2005, vol. 21, pp. 46-52.

    Article  CAS  Google Scholar 

  20. G. Kumar, R. Singh, J. Singh, D. Srivastava, G. K. Dey and I. Samajdar, J. Nucl. Mater. 2015, vol. 466, pp. 243-252.

    Article  CAS  Google Scholar 

  21. AA Ridha and WB Hutchinson, Acta metallurgica 1982, vol. 30, pp. 1929-1939.

    Article  CAS  Google Scholar 

  22. AA Benzerga, Y Bréchet, A Needleman and E Van der Giessen, Modelling and Simulation in Materials Science and Engineering 2003, vol. 12, p. 159.

    Article  Google Scholar 

  23. V.V Bulatov, L.L Hsiung, M. Tang, A. Arsenlis, M.C Bartelt, W. Cai, J.N. Florando, M. Hiratani, M. Rhee and G. Hommes, Nature 2006, vol. 440, p. 1174.

    Article  CAS  Google Scholar 

  24. H. Fan, S. Aubry, A. Arsenlis, J. A. El-Awady, Acta Mater. 2015, vol. 92, pp. 126-139.

    Article  CAS  Google Scholar 

  25. Richard LeSar, Annu. Rev. Condens. Matter Phys. 2014, vol. 5, pp. 375-407.

    Article  CAS  Google Scholar 

  26. AA Benzerga, Y Brechet, A Needleman and E Van der Giessen, Acta Mater. 2005, vol. 53, pp. 4765-4779.

    Article  CAS  Google Scholar 

  27. Lucia Nicola, Erik Van der Giessen and Alan Needleman, J. Appl. Phys. 2003, vol. 93, pp. 5920-5928.

    Article  CAS  Google Scholar 

  28. D. Kiener, PJ Guruprasad, SM Keralavarma, G. Dehm and AA Benzerga, Acta Materialia 2011, vol. 59, pp. 3825-3840.

    Article  CAS  Google Scholar 

  29. M.D. Uchic, P.A. Shade, D.M. Dimiduk, Annu Rev Mater. Res. 2009, vol. 39, pp. 361-386.

    Article  CAS  Google Scholar 

  30. J.A. El-Awady, Nat. Commun. 2015, vol. 6, p. 5926.

    Article  Google Scholar 

  31. AA Benzerga, Int. J. Plast. 2008, vol. 24, pp. 1128-1157.

    Article  CAS  Google Scholar 

  32. S Akarapu, HM Zbib and DF Bahr, Int. J. Plast. 2010, vol. 26, pp. 239-257.

    Article  CAS  Google Scholar 

  33. K.M. Davoudi, L. Nicola and J.J. Vlassak, J. Appl. Phys. 2012, vol. 111, p. 103522.

    Article  Google Scholar 

  34. SM Keralavarma, T. Cagin, A. Arsenlis and AA Benzerga, Physical Review Letters 2012, vol. 109, p. 265504.

    Article  Google Scholar 

  35. Dan Mordehai, Emmanuel Clouet, Marc Fivel and Marc Verdier, Philosophical Magazine 2008, vol. 88, pp. 899-925.

    Article  CAS  Google Scholar 

  36. Kostas Danas and VS Deshpande, Modell. Simul. Mater. Sci. Eng. 2013, vol. 21, p. 045008.

    Article  Google Scholar 

  37. SM Keralavarma and AA Benzerga, J. Mech. Phys. Solids 2015, vol. 82, pp. 1-22.

    Article  Google Scholar 

  38. SMH Haghighat, G Eggeler and D Raabe, Acta Mater. 2013, vol. 61, pp. 3709-3723.

    Article  Google Scholar 

  39. M. Hiratani, H.M. Zbib and M.A. Khaleel, Int. J. Plast. 2003, vol. 19, pp. 1271-1296.

    Article  Google Scholar 

  40. S.S Shishvan, R.M. McMeeking, T.M. Pollock and V.S Deshpande, Acta Mater. 2017, vol. 135, pp. 188-200.

    Article  CAS  Google Scholar 

  41. G. Kumar, A. Lodh, J. Singh, R. Singh, D Srivastava, GK Dey and I Samajdar, CIRP J. Manuf. Sci. Technol. 2017, vol. 19, pp. 176-190.

    Article  Google Scholar 

  42. G. Kumar, S. Balo, A. Dhoble, J. Singh, R. Singh, D. Srivastava, G.K. Dey and I. Samajdar, Metall. Mater. Trans. A 2017, vol. 48, pp. 2844-2857.

    Article  Google Scholar 

  43. S Raveendra, H Paranjape, S Mishra, H Weiland, RD Doherty and I Samajdar, Metallurgical and Materials Transactions A 2009, vol. 40, pp. 2220-2230.

    Article  CAS  Google Scholar 

  44. M.H. Alvi, S. W. Cheong, J. P. Suni, H. Weiland and A. D. Rollett, Acta Mater. 2008, vol. 56, pp. 3098-3108.

    Article  CAS  Google Scholar 

  45. DP Field, PB Trivedi, SI Wright and M Kumar, Ultramicroscopy 2005, vol. 103, pp. 33-39.

    Article  CAS  Google Scholar 

  46. Fabrice Barou, Claire Maurice, Jean-Marie Feppon and Julian Driver, International Journal of Materials Research 2009, vol. 100, pp. 516-521.

    Article  CAS  Google Scholar 

  47. S Ghosh, M Li and D Gardiner, Journal of manufacturing science and engineering 2004, vol. 126, pp. 74-82.

    Article  Google Scholar 

  48. SK Shekhawat, R Chakrabarty, V Basavaraj, VD Hiwarkar, KV Mani, PJ Guruprasad, AA Benzerga, KG Suresh and I Samajdar, Acta Materialia 2015, vol. 84, pp. 256-264.

    Article  CAS  Google Scholar 

  49. S Groh, EB Marin, MF Horstemeyer and HM Zbib, International Journal of Plasticity 2009, vol. 25, pp. 1456-1473.

    Article  CAS  Google Scholar 

  50. PJ Guruprasad and AA Benzerga, Journal of the Mechanics and Physics of Solids 2008, vol. 56, pp. 132-156.

    Article  Google Scholar 

  51. PJ Guruprasad, WJ Carter and AA Benzerga, Acta Materialia 2008, vol. 56, pp. 5477-5491.

    Article  CAS  Google Scholar 

  52. S. Raveendra, S. Mishra, K.V. M. Krishna, H. Weiland and I. Samajdar, Metall. Mater. Trans. A 2008, vol. 39, p. 2760.

    Article  CAS  Google Scholar 

  53. BD Cullity: Elements of X-Ray Diffraction. 2nd Edition, Adisson-Wesley Publishing, Phillippines. 1978.

    Google Scholar 

  54. I.C. Noyan and J.B. Cohen: Residual Stress: Measurement by Diffraction and Interpretation. Springer, New York (2013)

    Google Scholar 

  55. Jérémy Epp, Holger Surm, Thomas Hirsch and Franz Hoffmann, Journal of Materials Processing Technology 2011, vol. 211, pp. 637-643.

    Article  CAS  Google Scholar 

  56. H. Hu: in Recovery and Recrystallization of Metals, L. Himmel (ed.), Wiley, New York, 1963, pp 311–78

  57. JS Kallend and YC Huang, Metal science 1984, vol. 18, pp. 381-386.

    Article  CAS  Google Scholar 

  58. David D Sam and Brent L Adams, Metallurgical and Materials Transactions A 1986, vol. 17, pp. 513-517.

    Article  Google Scholar 

  59. N Rajmohan and JA Szpunar, Acta Mater. 2000, vol. 48, pp. 3327-3340.

    Article  CAS  Google Scholar 

  60. I. Samajdar and R.D. Doherty, Scripta Metall. Mater. 1995, vol. 32, pp. 845–850.

    Article  CAS  Google Scholar 

  61. Indradev Samajdar, Petar Ratchev, Bert Verlinden and Etienne Aernoudt, Acta Mater. 2001, vol. 49, pp. 1759-1769.

    Article  CAS  Google Scholar 

  62. Niels Hansen, Xiaoxu Huang, Wolfgang Pantleon and Grethe Winther, Philosophical Magazine 2006, vol. 86, pp. 3981-3994.

    Article  CAS  Google Scholar 

  63. X. Feaugas and H. Haddou, Philos. Mag. 2007, vol. 87, pp. 989–1018.

    Article  CAS  Google Scholar 

  64. R Khatirkar, LAI Kestens, R Petrov, P Pant and I Samajdar, ISIJ Int. 2011, vol. 51, pp. 849-856.

    Article  CAS  Google Scholar 

  65. A. Lodh, U. Tewary, R.P. Singh, T.N. Tak, A. Prakash, A. Alankar, P.J. Guruprasad and I. Samajdar, Metall. Mater. Trans. A, 2018.

  66. IL Dillamore, JG Roberts and AC Bush, Metal Science 1979, vol. 13, pp. 73-77.

    Article  CAS  Google Scholar 

  67. R Khatirkar, LAI Kestens, R Petrov and I Samajdar, ISIJ Int. 2009, vol. 49, pp. 78-85.

    Article  CAS  Google Scholar 

  68. A Korbel, JD Embury, M Hatherly, PL Martin and HW Erbsloh, Acta Metallurgica 1986, vol. 34, pp. 1999-2009.

    Article  CAS  Google Scholar 

  69. R Khatirkar, B Vadavadagi, SK Shekhawat, A Haldar and I Samajdar, ISIJ Int. 2012, vol. 52, pp. 884-893

    Article  CAS  Google Scholar 

  70. A Albou, A Borbely, C Maurice and JH Driver, Philos Mag 2011, vol. 91, pp. 3981-4000.

    Article  CAS  Google Scholar 

  71. BB He: Two-Dimensional X-Ray Diffraction. Wiley, New York, 2011.

    Google Scholar 

Download references

Acknowledgments

AL, PJG, and IS would like to acknowledge financial support from DST-SERB (India). Support from IITB-Monash research academy and National Facility of Texture and OIM (IITB) is also appreciated. AAB gratefully acknowledges support from the Lawrence Livermore National Laboratory under Master Task Agreements No. B599687 and B602391.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. J. Guruprasad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 12, 2018.

Appendix

Appendix

A typical texture measurement scheme with 10 deg step size in tilt (ψ) and rotation (φ) is shown in Figure A1(a). By rotation and tilt, we achieved the different measurement points, shown as circles in the scheme. X-ray diffraction from a polycrystalline material captured by an area detector appeared as ring(s), shown in γ − 2θ coordinates in Figure A1(b). For any particular combination of (ψ, φ, γ, θ, ω), the part of the diffraction ring was converted to the pole figure angles (α, β) as following[71]

Fig. A1
figure 11

(a) A standard pole figure measurement scheme with 10 deg step in rotation (ϕ) and tilt (ψ) angle. (b) The γ integration of a diffraction ring for (111) pole. It shows which points in the pole figure were getting calculated for a particular γ range. (c) Multiple polar angles corresponding to a single-pole figure position, which appeared to be an ambiguity of numerical solution. Such values were averaged out

$$ \alpha = \sin^{ - 1} \left| {h_{3} } \right| = \cos^{ - 1} \sqrt {h_{1}^{2} + h_{2}^{2} } $$
$$ \beta = \pm \cos^{ - 1} \frac{{h_{1} }}{{\sqrt {h_{1}^{2} + h_{2}^{2} } }}\begin{array}{*{20}c} {\beta \ge 0^{ \circ } \;{\text{if}}\;h_{ 2} \ge 0} \\ {\beta \ge 0^{ \circ } \;{\text{if}}\;h_{ 2} < 0} \\ \end{array} $$
(A1)

where h1, h2, and h3 are the unit vector components along the sample coordinates,

$$ h_{1} = \sin \theta \left( {\sin \varphi \sin \psi \sin \omega + \cos \varphi \cos \omega } \right) + \cos \theta \sin \varphi \cos \psi \cos \gamma - \cos \theta \sin \gamma \left( {\sin \varphi \sin \psi \cos \omega - \cos \varphi \sin \omega } \right) $$
(A2)
$$ h_{2} = - \sin \theta \left( {\cos \varphi \sin \psi \sin \omega - \sin \varphi \cos \omega } \right) - \cos \theta \cos \varphi \cos \psi \cos \gamma - \cos \theta \sin \gamma \left( {\sin \varphi \sin \psi \cos \omega - \cos \varphi \sin \omega } \right) $$
(A3)
$$ h_{3} = \sin \theta \cos \psi \sin \omega - \cos \theta \cos \omega \cos \psi \sin \gamma - \cos \theta \cos \gamma \sin \psi $$
(A4)

Different segments of the diffraction ring (based on γ spread and 2θ) captured different measurement points of the texture scheme as shown in Figure A1(b). In this study, we followed this procedure to obtain all possible measurement points (with 10 deg step size). For all of these points, residual stress was calculated from peak shift considering d0 as the equilibrium lattice spacing at strain-free state (obtained from annealed powder specimen). It is to be noted that this numerical scheme gave rise to multiple combinations of solutions corresponding to a single point in the texture measurement scheme (see Figure A1(c)). For such cases, the values were averaged out.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lodh, A., Tak, T.N., Prakash, A. et al. Microstructural Origin of Residual Stress Relief in Aluminum. Metall Mater Trans A 50, 5038–5055 (2019). https://doi.org/10.1007/s11661-019-05421-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05421-8

Navigation