Skip to main content
Log in

Through-Thickness Deformation Gradient in a Part-Pilgered Zirconium Tube: Experimental Measurements and Numerical Validation

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Through-thickness microstructure development and residual stress evolution were explored in a part-pilgered Zircaloy-4 tube. Clear gradients in microstructure and residual stress were experimentally established at different locations. Such locations were considered along the axial length and also across the wall thickness. These were naturally subjected to different von Mises effective strains and were reflected on strain/microstructural gradients. The deformation gradients were also simulated with a three-dimensional elastoplastic finite element model. The model used both isotropic and anisotropic yielding. Though deformation gradients were similar with both yielding criteria, the anisotropic yielding provided a better match with experimental residual stress gradients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B. Cheadle, C. Ells, and W. Evans: J. Nucl. Mater., 1967, vol. 23, pp. 199–208.

    Article  Google Scholar 

  2. O. Strehlau: Tube Pipe J., 2006, pp. 1–4.

  3. J. Osika, H. Palkowski, K. Świątkowski, D. Pociecha, and A. Kula: Arch. Metall. Mater., 2009, vol. 54, pp. 1239–51.

    Google Scholar 

  4. B. Verlinden, J. Driver, I. Samajdar, and R.D. Doherty: Thermo-Mechanical Processing of Metallic Materials, Elsevier, Amsterdam, 2007.

    Google Scholar 

  5. http://geschichte.salzgitter-ag.com/en/history-of-the-divisions/business-unit-energy/history-of-mannesmann/it-began-with-a-revolutionary-invention.html#c15458.

  6. N. Saibaba: J. Nucl. Mater., 2008, vol. 383, pp. 63–70.

    Article  Google Scholar 

  7. E. Girard, R. Guillén, P. Weisbecker, and M. François: J. Nucl. Mater., 2001, vol. 294, pp. 330–38.

    Article  Google Scholar 

  8. C. Ganguly: Proc. Symp. Zirconium—2002, Baba Atomic Research Centre, Mumbai, 2002.

  9. C. Sundaram: Trans. Indian Inst. Met., 1986, vol. 39, pp. 12–27.

    Google Scholar 

  10. H. Akhiani and J.A. Szpunar: Appl. Surf. Sci., 2013, vol. 285, pp. 832–39.

    Article  Google Scholar 

  11. K.M. Krishna, S. Sahoo, I. Samajdar, S. Neogy, R. Tewari, D. Srivastava, G. Dey, G.H. Das, N. Saibaba, and S. Banarjee: J. Nucl. Mater., 2008, vol. 383, pp. 78–85.

    Article  Google Scholar 

  12. G. Kumar, A. Kanjarla, A. Lodh, J. Singh, R. Singh, D. Srivastava, G. Dey, N. Saibaba, R. Doherty, and I. Samajdar: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 1–15.

    Google Scholar 

  13. W.M. Baldwin: Residual Stresses in Metals, McGraw-Hill, New York, 1949.

    Google Scholar 

  14. U. Dixit and P. Dixit: Int. J. Mach. Tools Manfact., 1997, vol. 37, pp. 837–53.

    Article  Google Scholar 

  15. G.E. Totten: Handbook of Residual Stress and Deformation of Steel, ASM INTERNATIONAL, Materials Park, OH, 2002.

    Google Scholar 

  16. P. Withers and H. Bhadeshia: Mater. Sci. Technol., 2001, vol. 17, pp. 366–75.

    Article  Google Scholar 

  17. T. Wu, C. Hartley, X. Wang, and C. Tsai: J. Mater. Processing Technol., 1994, vol. 45, pp. 111–16.

    Article  Google Scholar 

  18. N. Keskar, S. Mukherjee, K.M. Krishna, D. Srivastava, G. Dey, P. Pant, R. Doherty, and I. Samajdar: Acta Mater., 2014, vol. 69, pp. 265–74.

    Article  Google Scholar 

  19. A.S. Khan and X. Wang: Strain Measurements and Stress Analysis, Prentice Hall, Upper Saddle River, NJ, 2001.

    Google Scholar 

  20. PanalyticalTM X’Pert Stress Plus Software Package.

  21. B.D. Cullity: Elements of X-Ray Diffraction, Prentice Hall, Upper Saddle River, NJ, 2001.

    Google Scholar 

  22. G.E. Dieter: Mechanical Metallurgy, 2nd ed., McGraw-Hill Book Co., New York, NY, 1976, pp. 160–65.

    Google Scholar 

  23. I. Ismail and J. Cohen: Residual Stress Measurement by Diffraction and Interpretation, Elsevier Science, Burlington, MA, 1987.

    Google Scholar 

  24. P.S. Prevey: X-Ray Diffraction Residual Stress Techniques, vol. 10, ASM Handbook, ASM INTERNATIONAL, Metals Park, OH, 1986, pp. 380–92.

    Google Scholar 

  25. P.S. Prevéy: Developments in Materials Characterization Technologies, 1996, ASM International, Materials Park, pp. 103–10.

    Google Scholar 

  26. P. Van Houtte and L. De Buyser: Acta Metall. Mater., 1993, vol. 41, pp. 323–36.

    Article  Google Scholar 

  27. A. Baczmanski, C. Braham, W. Seiler, and N. Shiraki: Surf. Coatings Technol., 2004, vol. 182, pp. 43–54.

    Article  Google Scholar 

  28. P. Gergaud, P. Goudeau, O. Sicardy, N. Tamura, and O. Thomas: Int. J. Mater. Product Technol., 2006, vol. 26, pp. 354–71.

    Article  Google Scholar 

  29. B. Kania, P. Indyka, L. Tarkowski, and E. Beltowska-Lehman: J. Appl. Crystallogr., 2015, vol. 48, pp. 71–78.

    Article  Google Scholar 

  30. D. Kohli, R. Rakesh, V. Sinha, G. Prasad, and I. Samajdar: J. Nucl. Mater., 2014, vol. 447, pp. 150–59.

    Article  Google Scholar 

  31. U. Welzel, J. Ligot, P. Lamparter, A. Vermeulen, and E. Mittemeijer: J. Appl. Crystallogr., 2005, vol. 38, pp. 1–29.

    Article  Google Scholar 

  32. P. Withers and H. Bhadeshia: Mater. Sci. Technol., 2001, vol. 17, pp. 355–65.

    Article  Google Scholar 

  33. D.P. Field: Ultramicroscopy, 1997, vol. 67, pp. 1–9.

    Article  Google Scholar 

  34. M.M. Nowell and S.I. Wright: Ultramicroscopy, 2005, vol. 103, pp. 41–58.

    Article  Google Scholar 

  35. S.I. Wright and B.L. Adams: Metall. Trans. A, 1992, vol. 23A, pp. 759–67.

    Article  Google Scholar 

  36. K. Mori, K. Osakada, and T. Oda: Int. J. Mech. Sci., 1982, vol. 24, pp. 519–27.

    Article  Google Scholar 

  37. K. Osakada, J. Nakano, and K. Mori: Int. J. Mech. Sci., 1982, vol. 24, pp. 459–68.

    Article  Google Scholar 

  38. S. Shima and K. Mori: Proc. Conf. on Metal Forming Plasticity, Tutzing, Germany, Aug.–Sept. 1978, 1979, pp. 305–17.

  39. S. Shima, K. Mori, T. Oda, and K. Osakada: Proc. 4th Int. Conf. on Production Engineering, 1980, pp. 82–87.

  40. M. Rout, S.K. Pal, and S.B. Singh: J. Manufact. Processes, 2016, vol. 24, pp. 283–92.

    Article  Google Scholar 

  41. ABAQUS Documentation, Providence, RI, 2006.

  42. D. Flanagan and T. Belytschko: Int. J. Numer. Methods Eng., 1981, vol. 17, pp. 679–706.

    Article  Google Scholar 

  43. R. Hill: Proc. Royal Society of London A: Mathematical, Physical and Engineering Sciences, The Royal Society, London, 1948, pp. 281–97.

  44. W. Hosford: Met. Eng. Q., 1966, vol. 6, pp. 13–19.

    Google Scholar 

  45. F. Barlat, D.J. Lege, and J.C. Brem: Int. J. Pasticity, 1991, vol. 7, pp. 693–712.

    Article  Google Scholar 

  46. R. Hill: Mathematical Proceedings of the Cambridge Philosophical Society, Cambridge University Press, Cambridge, 1979, pp. 179–91.

  47. D. Raabe and F. Roters: Int. J. Plasticity, 2004, vol. 20, pp. 339–61.

    Article  Google Scholar 

  48. Standard Test Method for Plastic Strain Ratio r for Sheet Metal, “E-517,” ASTM International, West Conshohocken, PA, 2010.

  49. D. Banabic: Sheet Metal Forming Processes, Springer, New York, NY, 2010, pp. 27–140.

    Book  Google Scholar 

  50. V. Hiwarkar, S. Sahoo, I. Samajdar, K. Narasimhan, K.M. Krishna, G. Dey, D. Srivastava, R. Tewari, and S. Banerjee: J. Nucl. Mater., 2009, vol. 384, pp. 30–37.

    Article  Google Scholar 

  51. S. Sahoo, V. Hiwarkar, I. Samajdar, G. Dey, D. Srivastav, R. Tiwari, and S. Banerjee: Scripta Mater., 2007, vol. 56, pp. 963–66.

    Article  Google Scholar 

  52. J. Singh, S. Mahesh, S. Roy, G. Kumar, D. Srivastava, G.K. Dey, N. Saibaba, and I. Samajdar: J. Mater. Processing Technol., 2016, vol. 237, pp. 126–38.

    Article  Google Scholar 

  53. E. Siebel and F. Neumann: Stahl Eisen, 1954, vol. 74, pp. 139–45.

    Google Scholar 

  54. H. Yoshida, T. Matsui, T. Otani, and K. Mandai: Ann. CIRP, 1975, vol. 24, pp. 191–97.

    Google Scholar 

  55. M. Furugen and C. Hayashi: J. Mech. Working Technol., 1984, vol. 10, pp. 273–86.

    Article  Google Scholar 

  56. E. Girard: Theoretical and Experimental Study of Cold Pilgering, University of Nantes, Nantes, France, 1993.

    Google Scholar 

  57. J.L. Aubin, E. Girard, and P. Montmitonnet: Zirconium in the Nuclear Industry: 10th Int. Symp., ASTM STP 1245, A.M. Garde and E.R. Bradley, eds., ASTM International, Philadelphia, PA, 1994, pp. 245–63.

  58. S. Mulot: Theoretical and Experimental Study of Cold Pilgering, 1997.

  59. S. Mulot, A. Hacquin, P. Montmitonnet, and J.L. Aubin: J. Mater. Processing Technol., 1996, vol. 60, pp. 505–12.

    Article  Google Scholar 

  60. J.L. Aubin, P. Montmitonnet, and S. Mulot: Zirconium in the Nuclear Industry: 12th Int. Symp., ASTM STP 1354, G.P. Sabol and G.D. Moan, eds., ASTM International, West Conshohocken, PA, 2000, pp. 460–81.

  61. P. Huml and R. Fogelholm: J. Mater. Processing Technol., 1994, vol. 42, pp. 167–73.

    Article  Google Scholar 

  62. P. Huml, R. Fogelholm, and A. Salwén: CIRP Annals-Manufacturing Technol., 1993, vol. 42, pp. 283–86.

    Article  Google Scholar 

  63. J. Osika and W. Libura: J. Mater. Processing Technol., 1992, vol. 34, pp. 325–32.

    Article  Google Scholar 

  64. P. Montmitonnet, R. Logé, M. Hamery, Y. Chastel, J.L. Doudoux, and J.L. Aubin: J. Mater. Processing Technol., 2002, vol. 125, pp. 814–20.

    Article  Google Scholar 

  65. B. Lodej, K. Niang, P. Montmitonnet, and J.L. Aubin: J. Mater. Processing Technol., 2006, vol. 177, pp. 188–91.

    Article  Google Scholar 

  66. R. Lebensohn and C. Tomé: Acta Metall. Mater., 1993, vol. 41, pp. 2611–24.

    Article  Google Scholar 

  67. R. Lebensohn, M. Gonzalez, C. Tomé, and A. Pochettino: J. Nucl. Mater., 1996, vol. 229, pp. 57–64.

    Article  Google Scholar 

  68. E. Vanegas-Márquez, K. Mocellin, L. Toualbi, Y. De Carlan, and R.E. Logé: J. Nucl. Mater., 2012, vol. 420, pp. 479–90.

    Article  Google Scholar 

  69. E. Vanegas, K. Mocellin, and R. Logé: Procedia Eng., 2011, vol. 10, pp. 1208–13.

    Article  Google Scholar 

  70. M. Horada, A. Honda, and S. Toyoshima: Zirconium in the Nuclear Industry: 14th Int. Symp., ASTM International, West Conshohocken, PA, 2005, vol. 2 (3) pp. 233–46.

  71. Y.V. Frolov, I. Mamuzić, and V. Danchenko: Metalurgija, 2006, vol. 45 (3), pp. 179–84.

    Google Scholar 

  72. H. Abe and M. Furugen: Mater. Trans., 2010, vol. 51, pp. 1200–05.

    Article  Google Scholar 

  73. R.W. Davies, M.A. Khaleel, W.C. Kinsel, and H.M. Zbib: J. Eng. Mater. Technol., 2002, vol. 124 (2), pp. 125–34.

    Article  Google Scholar 

  74. J. Singh, S. Mahesh, G. Kumar, P. Pant, D. Srivastava, G.K. Dey, N. Saibaba, and I. Samajdar: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 1927–47.

    Article  Google Scholar 

  75. N. Gurao, H. Akhiani, and J. Szpunar: J. Nucl. Mater., 2014, vol. 453 (1), pp. 158–68.

    Article  Google Scholar 

Download references

Acknowledgments

Support from the Board of Research on Nuclear Science (BRNS) and from the Nuclear Fuel Complex (NFC) is acknowledged. The authors appreciate the support from the National Facility of Texture and OIM—a DST-IRPHA facility at IIT Bombay and from the Department of Science and Technology (DST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Samajdar.

Additional information

Manuscript submitted September 14, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, G., Balo, S., Dhoble, A. et al. Through-Thickness Deformation Gradient in a Part-Pilgered Zirconium Tube: Experimental Measurements and Numerical Validation. Metall Mater Trans A 48, 2844–2857 (2017). https://doi.org/10.1007/s11661-017-4032-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4032-y

Keywords

Navigation