Skip to main content
Log in

Mechanistic Origin of Orientation-Dependent Substructure Evolution in Aluminum and Aluminum-Magnesium Alloys

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Role of magnesium (Mg) solute and deformation temperature on the orientation-dependent substructure evolution in aluminum (Al) was investigated experimentally. The mechanistic origin of the experimental orientation dependence was then explored with numerical modelling. In experiments, the Al–Mg showed more geometrically necessary dislocation density and residual strain but had insignificant differences between hard and soft crystallographic orientations. Increased Mg-content led to the conversion of dislocation cell structures to dislocation tangles. On the other hand, an increase in deformation temperature appeared to nullify the role of solute, and irrespective of Mg content, the substructures were not orientation dependent. Molecular dynamics (MD) simulations provided temperature and solute dependence of dislocation drag coefficient and probability of cross slip. These appeared to be orientations independent. Discrete dislocation dynamics (DDD) simulations were then conducted by incorporating relevant parameters from MD and fitting DDD simulated stress-strain behavior with experimental data. Further, the solute was modelled as static obstacles to dislocation movement, hindering easy glide and short-range dislocation–dislocation interactions. Dislocation interactions at the slip plane intersections generated dynamic obstacles and sources—their ratio being determined by the probability of cross-slip. The DDD simulations indicated that evolving density of dynamic obstacles and sources determined the orientation dependence of substructure evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

source density is plotted as a function of plastic strain, involving soft and hard orientations for both low and high solute aluminum, subjected to 300K and 500K simulated PSC. It is to be noted that the strength of dynamic junctions did not evolve with crystallographic orientations in our numerical simulations

Similar content being viewed by others

References

  1. F.J. Humphreys and M. Hatherly: Recrystallization and related annealing phenomena, 2nd ed., Pergamon Materials Series, Elsevier, Oxford, 2004.

  2. B. Verlinden, J. Driver, I. Samajdar, and R.D. Doherty: Thermo-mechanical Processing of Metallic Materials, Elsevier, Oxford, 2007.

    Google Scholar 

  3. J.E. Dorn and P. Pietrokowsky: J. Met., 1950, vol. 2, pp. 933–43.

    Google Scholar 

  4. B.A. Bilby: Proc. Phys. Soc. Sect. A., 1950, vol. 63, pp. 191–200.

    Article  Google Scholar 

  5. O.D. Sherby, R.A. Anderson, and J.E. Dorn: J. Met., 1951, vol. 3, pp. 643–52.

    CAS  Google Scholar 

  6. G.W.J. Waldron: Acta Metall., 1965, vol. 13, pp. 897–906.

    Article  CAS  Google Scholar 

  7. J.G. Morris: Mater. Sci. Eng., 1974, vol. 13, pp. 101–08.

    Article  CAS  Google Scholar 

  8. D.J. Lloyd: Metall. Trans. A., 1980, vol. 11A, pp. 1287–94.

    Article  CAS  Google Scholar 

  9. J.H. Driver and J.M. Papazian: Mater. Sci. Eng., 1985, vol. 76, pp. 51–56.

    Article  CAS  Google Scholar 

  10. B. Bay, N. Hansen, D.A. Hughes, and D. Kuhlmann-Wilsdorf: Acta Metall. Mater., 1992, vol. 40, pp. 205–19.

    Article  CAS  Google Scholar 

  11. D.A. Hughes: Acta Metall. Mater., 1993, vol. 41, pp. 1421–30.

    Article  CAS  Google Scholar 

  12. J. Gubicza, N.Q. Chinh, Z. Horita, and T.G. Langdon: Mater. Sci. Eng. A., 2004, vol. 387–389, pp. 55–59.

    Article  CAS  Google Scholar 

  13. X. Sauvage, N. Enikeev, R. Valiev, Y. Nasedkina, and M. Murashkin: Acta Mater., 2014, vol. 72, pp. 125–36.

    Article  CAS  Google Scholar 

  14. M. Zha, X.T. Meng, H.M. Zhang, X.H. Zhang, H.L. Jia, Y.J. Li, J.Y. Zhang, H.Y. Wang, and Q.C. Jiang: J. Alloys Compd., 2017, vol. 728, pp. 872–77.

    Article  CAS  Google Scholar 

  15. J.H. Driver, D. Juul Jensen, and N. Hansen: Acta Metall. Mater., 1994, vol. 42, pp. 3105–114.

    Article  CAS  Google Scholar 

  16. X. Huang and N. Hansen: Scr. Mater., 1997, vol. 37, pp. 1–7.

    Article  CAS  Google Scholar 

  17. N. Hansen and X. Huang: Acta Mater., 1998, vol. 46, pp. 1827–36.

    Article  CAS  Google Scholar 

  18. Q. Liu, D. Juul Jensen, and N. Hansen: Acta Mater., 1998, vol. 46, pp. 5819–38.

    Article  CAS  Google Scholar 

  19. S. Sun, B.L. Adams, and W.E. King: Philos. Mag. A Phys. Condens. Matter Struct. Defects Mech. Prop., 2000, vol. 80, pp. 9–25.

    CAS  Google Scholar 

  20. L. Delannay, O.V. Mishin, D.J. Jensen, and P. Van Houtte: Acta Mater., 2001, vol. 49, pp. 2441–51.

    Article  CAS  Google Scholar 

  21. I. Samajdar, P. Ratchev, B. Verlinden, and E. Aernoudt: Acta Mater., 2001, vol. 49, pp. 1759–69.

    Article  CAS  Google Scholar 

  22. N. Hansen, X. Huang, W. Pantleon, and G. Winther: Philos. Mag., 2006, vol. 86, pp. 3981–94.

    Article  CAS  Google Scholar 

  23. C.C. Merriman, D.P. Field, and P. Trivedi: Mater. Sci. Eng. A., 2008, vol. 494, pp. 28–35.

    Article  CAS  Google Scholar 

  24. S. Zhang, W. Liu, J. Wan, R.D.K. Misra, Q. Wang, and C. Wang: Mater. Sci. Eng. A., 2020, vol. 775, p. 138939.

    Article  CAS  Google Scholar 

  25. R.D. Doherty, L.C. Chen, and I. Samajdar: Mater. Sci. Eng. A., 1998, vol. 257, pp. 18–36.

    Article  Google Scholar 

  26. I. Samajdar, B. Verlinden, L. Rabet, and P. Van Houtte: Mater. Sci. Eng. A., 1999, vol. 266, pp. 146–54.

    Article  Google Scholar 

  27. J.S. Kallend and Y.C. Huang: Met. Sci. J., 1984, vol. 18, pp. 381–86.

    Article  CAS  Google Scholar 

  28. I.L. Dillamore, P.L. Morris, C.J.E. Smith, and W.B. Hutchinson: Proc. R. Soc. Lond. A. Math. Phys. Sci., 1972, vol. 329, pp. 405–20.

    CAS  Google Scholar 

  29. R. Becker, J.F. Butler, H. Hu, and L.A. Lalli: Metall. Trans. A., 1991, vol. 22A, pp. 45–58.

    Article  CAS  Google Scholar 

  30. R. Khatirkar, K.V. Mani Krishna, L.A.I. Kestens, R.H. Petrov, P. Pant, and I. Samajdar: Mater. Sci. Forum., 2011, vol. 702–703, pp. 782–85.

    Article  CAS  Google Scholar 

  31. J. Jiang, T. Ben Britton, and A.J. Wilkinson: Int. J. Plasticity., 2015, vol. 69, pp. 102–17.

    Article  CAS  Google Scholar 

  32. Q. Sun, Y. Ni, and S. Wang: Acta Mater., 2021, vol. 203, p. 116474.

    Article  CAS  Google Scholar 

  33. A.H. Cottrell and M.A. Jaswon: Proc. R. Soc. Lond., 1949, vol. 199, pp. 109–14.

    Google Scholar 

  34. N.F. Mott and F.R.N. Nabarro: Bristol Physics Society Conference, 1948.

  35. S. Plimpton: J. Comput. Phys., 1995, vol. 117, pp. 1–19.

    Article  CAS  Google Scholar 

  36. M.I. Mendelev, M. Asta, M.J. Rahman, and J.J. Hoyt: Philos. Mag., 2009, vol. 89, pp. 3269–85.

    Article  CAS  Google Scholar 

  37. A. Lodh, T.N. Tak, A. Prakash, P.J. Guruprasad, C. Hutchinson, and I. Samajdar: Metall. Mater. Trans. A., 2017, vol. 48A, pp. 5317–31.

    Article  CAS  Google Scholar 

  38. A. Prakash, T.N. Tak, A. Lodh, N. Nayan, S.V.S. Narayana Murty, P.J. Guruprasad, and I. Samajdar: Metall. Mater. Trans. A., 2019, vol. 50A, pp. 1250–60.

    Article  CAS  Google Scholar 

  39. A. Lodh, T.N. Tak, A. Prakash, P.J. Guruprasad, S.M. Keralavarma, A.A. Benzerga, C. Hutchinson, and I. Samajdar: Metall. Mater. Trans. A., 2019, vol. 50A, pp. 5038–55.

    Article  CAS  Google Scholar 

  40. K.C. Nayak and P.P. Date: Mater. Charact., 2021, vol. 173, p. 110954.

    Article  CAS  Google Scholar 

  41. P. van Houtte: Mater. Sci. Forum., 1993, vol. 133–136, pp. 97–110.

    Article  Google Scholar 

  42. W. Reimers and R. Dupke: Textures Microstruct., 1995, vol. 23, pp. 173–83.

    Article  Google Scholar 

  43. P. Vanhoutte and L.D. Buyser: Acta. Metall., 1999, vol. 41, pp. 323–36.

    Article  Google Scholar 

  44. P.J. Withers and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 2001, vol. 17, pp. 355–65.

    Article  CAS  Google Scholar 

  45. K.V. Mani Krishna, R. Raghavan, D. Srivastava, G.K. Dey, S.K. Sahoo, and I. Samjadar: Trans. Indian Inst. Met., 2011, vol. 64, pp. 309–13.

    Article  CAS  Google Scholar 

  46. A. Borbély and I. Groma: Appl. Phys. Lett., 2001, vol. 79, pp. 1772–74.

    Article  CAS  Google Scholar 

  47. T.J. Ruggles and D.T. Fullwood: Ultramicroscopy., 2013, vol. 133, pp. 8–15.

    Article  CAS  Google Scholar 

  48. G.C. Sneddon, P.W. Trimby, and J.M. Cairney: Mater. Sci. Eng. Reports., 2016, vol. 110, pp. 1–12.

    Article  Google Scholar 

  49. D.B. Williams and C.B. Carter: Transmission Electron Microscopy: A Textbook for Materials Science. Diffraction II, vol. 2, Springer, 1996.

  50. M.J. Mills, M.S. Daw, S.M. Foiles, and D.B. Miracle: MRS Online Proceed. Lib., 1992, vol. 288, pp. 257–62.

    Article  Google Scholar 

  51. E. Oren, E. Yahel, and G. Makov: Comput. Mater. Sci., 2017, vol. 138, pp. 246–54.

    Article  CAS  Google Scholar 

  52. P. Hirel: Comput. Phys. Commun., 2015, vol. 197, pp. 212–19.

    Article  CAS  Google Scholar 

  53. M.W. Finnis and J.E. Sinclair: Philos. Mag., 1984, vol. 50, pp. 45–55.

    Article  CAS  Google Scholar 

  54. A. Stukowski: Model. Simul. Mater. Sci. Eng., 2010, vol. 18, pp. 015012–19.

    Article  Google Scholar 

  55. A. Stukowski, V.V. Bulatov, and A. Arsenlis: Model. Simul. Mater. Sci. Eng., 2012, vol. 20, pp. 085007–23.

    Article  Google Scholar 

  56. E. Van der Giessen and A. Needleman: Model. Simul. Mater. Sci. Eng., 1995, vol. 3, pp. 689–735.

    Article  Google Scholar 

  57. A.A. Benzerga, Y. Bréchet, A. Needleman, and E. Van der Giessen: Model. Simul. Mater. Sci. Eng., 2004, vol. 12, pp. 159–96.

    Article  Google Scholar 

  58. H. Fan, Z. Li, M. Huang, and X. Zhang: Int. J. Solids Struct., 2011, vol. 48, pp. 1754–66.

    Article  CAS  Google Scholar 

  59. S.S. Shishvan and E. Van der Giessen: J. Mech. Phys. Solids., 2010, vol. 58, pp. 678–95.

    Article  CAS  Google Scholar 

  60. A. Prakash, T.N. Tak, N.N. Pai, S.V.S.N. Murty, P.J. Guruprasad, R.D. Doherty, and I. Samajdar: Model. Simul. Mater. Sci., 2021, vol. 29, p. 085016.

    Article  CAS  Google Scholar 

  61. X.G. Qiao, N. Gao, and M.J. Starink: Philos. Mag., 2012, vol. 92, pp. 446–70.

    Article  CAS  Google Scholar 

  62. R. Mondal, S.K. Bonagani, A. Lodh, T. Sharma, P.V. Sivaprasad, G. Chai, V. Kain, and I. Samajdar: Corrosion., 2019, vol. 75, pp. 1315–26.

    Article  CAS  Google Scholar 

  63. M.I. Khan, A. Prakash, H.K. Mehtani, P. Raut, N.N. Pai, A. Sarkar, M.J.N.V. Prasad, S. Parida, and I. Samajdar: Metall. Mater. Trans. A., 2021, vol. 52A, pp. 4597–4608.

    Article  CAS  Google Scholar 

  64. K. Thool, A. Patra, D. Fullwood, K.V.M. Krishna, D. Srivastava, and I. Samajdar: Int. J. Plasticity., 2020, vol. 133, p. 102785.

    Article  CAS  Google Scholar 

  65. B. Gurrutxaga-Lerma, D.S. Balint, D. Dini, D.E. Eakins, and A.P. Sutton: Dynamic Discrete Dislocation Plasticity, vol. 47, Elsevier, Amsterdam, 2014.

  66. S. Zhao, Y.N. Osetsky, and Y. Zhang: J. Alloys Compd., 2017, vol. 701, pp. 1003–08.

    Article  CAS  Google Scholar 

  67. W.G. Nöhring and W.A. Curtin: Acta Mater., 2017, vol. 128, pp. 135–48.

    Article  CAS  Google Scholar 

  68. Y. Qi and R.K. Mishra: Phys. Rev. B Condens. Matter Mater. Phys., 2007, vol. 75, pp. 1–5.

    Article  CAS  Google Scholar 

  69. T.C. Schulthess, P.E.A. Turchi, and A. Gonis: Acta Mater., 1998, vol. 46, pp. 2215–21.

    Article  CAS  Google Scholar 

  70. T. Morishige, T. Hirata, T. Uesugi, Y. Takigawa, M. Tsujikawa, and K. Higashi: Scr. Mater., 2011, vol. 64, pp. 355–58.

    Article  CAS  Google Scholar 

  71. D. Zhao, O.M. Løvvik, K. Marthinsen, and Y. Li: J. Mater. Sci., 2016, vol. 51, pp. 6552–68.

    Article  CAS  Google Scholar 

  72. V.C. Kannan and G. Thomas: Int. J. Appl. Phys., 1966, vol. 37, pp. 2363–70.

    Article  CAS  Google Scholar 

  73. H. Hu: in Recovery and Recrystallization of Metals, L. Himmel (ed.), Wiley, New York, 1963, pp. 311–78.

  74. D.D. Sam and B.L. Adams: Metall. Mater. Trans. A., 1986, vol. 17A, pp. 513–17.

    Article  Google Scholar 

  75. G. Guiglionda, A. Borbély, and J.H. Driver: Acta Mater., 2004, vol. 52, pp. 3413–23.

    Article  CAS  Google Scholar 

  76. S.K. Shekhawat, R. Chakrabarty, V. Basavaraj, V.D. Hiwarkar, K.V. Mani, P.J. Guruprasad, A.A. Benzerga, K.G. Suresh, and I. Samajdar: Acta Mater., 2015, vol. 84, pp. 256–64.

    Article  CAS  Google Scholar 

  77. N. Keskar, S. Mukherjee, K.V. Mani Krishna, D. Srivastava, G.K. Dey, P. Pant, R.D. Doherty, and I. Samajdar: Acta Mater., 2014, vol. 69, pp. 265–74.

    Article  CAS  Google Scholar 

  78. A. Dutta, D. Ponge, S. Sandlöbes, and D. Raabe: Materialia., 2019, vol. 5, p. 100252.

    Article  CAS  Google Scholar 

  79. I.L. Dillamore, J.G. Roberts, and A.C. Bush: Met. Sci., 1979, vol. 13, pp. 73–77.

    Article  CAS  Google Scholar 

  80. B.J. Duggan, M. Hatherly, W.B. Hutchinson, and P.T. Wakefield: Met. Sci., 1978, vol. 12, pp. 343–51.

    Article  CAS  Google Scholar 

  81. M.Z. Quadir and B.J. Duggan: Acta Mater., 2004, vol. 52, pp. 4011–21.

    Article  CAS  Google Scholar 

  82. M.P. Bondar, S.G. Psakhie, A.I. Dmitriev, and A.Y. Nikonov: Phys. Mesomech., 2013, vol. 16, pp. 191–99.

    Article  Google Scholar 

  83. A.A. Ridha and W.B. Hutchinson: Acta Metall., 1982, vol. 30, pp. 1929–39.

    Article  CAS  Google Scholar 

  84. R. Becker and S. Panchanadeeshwaran: Acta Metall. Mater., 1995, vol. 43, pp. 2701–19.

    Article  CAS  Google Scholar 

  85. S. Panchanadeeswaran, R.D. Doherty, and R. Becker: Acta Mater., 1996, vol. 44, pp. 1233–62.

    Article  CAS  Google Scholar 

  86. H. Pirgazi and L.A. Kestens: Mater. Charact., 2021, vol. 171, p. 110752.

    Article  CAS  Google Scholar 

  87. S.R. Kalidindi, A. Bhattacharyya, and R.D. Doherty: Proc. R. Soc. A Math. Phys. Eng. Sci., 2004, vol. 460, pp. 1935–56.

    Article  CAS  Google Scholar 

  88. P. Van Houtte: Textures Microstruct., 1988, vol. 8, pp. 313–50.

    Article  Google Scholar 

  89. P.J. Guruprasad and A.A. Benzerga: J. Mech. Phys. Solids., 2008, vol. 56, pp. 132–56.

    Article  Google Scholar 

  90. P.J. Guruprasad and A.A. Benzerga: IOP Conf. Ser. Mater. Sci. Eng., 2008, vol. 2009, p. 01.

    Google Scholar 

  91. W. Pantleon: Scr. Mater., 2008, vol. 58(11), pp. 994–97.

    Article  CAS  Google Scholar 

  92. N. Allain-Bonasso, F. Wagner, S. Berbenni, and D.P. Field: Mater. Sci. Eng. A., 2010, vol. 548, pp. 56–63.

    Article  CAS  Google Scholar 

  93. M. Calcagnotto, D. Ponge, E. Demir, and D. Raabe: Mater. Sci. Eng. A., 2010, vol. 527, pp. 2738–46.

    Article  CAS  Google Scholar 

  94. A. Kundu and D.P. Field: Mater. Sci. Eng. A., 2016, vol. 667, pp. 435–43.

    Article  CAS  Google Scholar 

  95. S. Sun, B.L. Adams, and W.E. King: Philos. Mag. A., 2000, vol. 80, pp. 9–25.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge support from the Indian Space Research Organization (ISRO). Support from the National Facility of Texture and OIM and CoEST (center for excellence in steel technology) Gleeble™ lab are also acknowledged. CVS acknowledges the support from Natural Sciences and Engineering Research Council of Canada (NSERC), Compute Canada and the University of Toronto.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indradev Samajdar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 226 kb)

Appendices

Appendix A: Geometrically Necessary Dislocation (GND) Density calculation from Discrete Dislocation Dynamics (DDD) Simulations

DDD-simulated GND densities, estimated a subdomain (\(\omega \subseteq\Omega \)), is defined[90] as,

$${\rho }_{\rm GND}\left(\omega \right)=\frac{|\left|{\varvec{B}}\left(\omega \right)\right||}{b}=\frac{\surd {{B}_{i}B}_{i}}{b}$$
(A1)

where \({\varvec{B}}(\omega )\) is the net Burgers vector over \(\omega \) and b is the material Burgers vector length. Following Eq. [A1], a network of dislocations piercing a plane with the unit normal n has a net Burgers Vector B per unit area, where,

$${B}_{i}={G}_{ij}{n}_{j}$$
(A2)

G is a tensor that quantifies the non-redundant dislocation density within the domain and can be viewed as a measure of lattice (slip plane) incompatibility. For Volterra edge dislocations under plane strain conditions, take n as the out of plane normal \({{\varvec{e}}}_{3}={{\varvec{e}}}_{1}\times {{\varvec{e}}}_{2}\) with the \({{\varvec{e}}}_{1}\) and \({{\varvec{e}}}_{2}\) the base vectors in the \({x}_{1}-{x}_{2}\) plane of deformation. On the basis of \({e}_{i}\), the components of G reduce to those of Nye’s tensor provided small transformations and neglecting elastic strains:

$${G}_{ij}=\sum_{\xi =1}^{{N}_{\rm s}}\left({\rho }_{+}^{\xi }-{\rho }_{-}^{\xi }\right){b}_{i}^{(\xi )}{n}_{j},$$
(A3)

where \({N}_{\rm s}\) denotes the number of active slip systems under the imposed loading; \({\varvec{b}}\left(\xi \right)\) is the Burgers vector common to all dislocations on the slip system \(\xi \). Substituting (3) into (2) we get

$${B}_{i}=\sum_{\xi =1}^{{N}_{\rm s}}\left({\rho }_{+}^{\xi }-{\rho }_{-}^{\xi }\right){s}_{i}^{\xi }$$
(A4)

If \({\phi }^{\xi }\) denotes the orientation of the slip system measured with respect to the \({x}_{\rm 1}\)-axis, GND density may be written as follows:

$${\rho }_{\rm GND}=\sqrt{{\left[\sum_{\xi =1}^{{N}_{\rm s}}\left({\rho }_{+}^{\xi }-{\rho }_{-}^{\xi }\right)\mathrm{cos}{\phi }^{\xi }\right]}^{2}+{\left[\sum_{\xi =1}^{{N}_{\rm s}}\left({\rho }_{+}^{\xi }-{\rho }_{-}^{\xi }\right)\mathrm{sin}{\phi }^{\xi }\right]}^{2}}$$
(A5)

Thus, using (5), GND density can be computed. It must, however be noted that the computation is highly dependent upon the \(\omega \) chosen, which has been optimized[90] in our study.

Appendix B: Geometrically Necessary Dislocation (GND) Density Calculation from Experimental Data

For estimating GND density, the approach of cross-correlation[47,60] or high-resolution EBSD was used. In particular, the cross-correlation results were obtained using a shareware (Open XY™) from Brigham Young University, for details reader may refer Ruggles and Fullwood.[47] It is to be noted that GND calculations in Open XY™ can be accomplished using three different techniques. These are termed \({{\varvec{\Lambda}}}_{3}, {{\varvec{\Lambda}}}_{5}\) and \({{\varvec{\Lambda}}}_{9}\), where \(\mathrm{3,5}\) and \(9\) are the number of terms in the Nye tensor used for GND calculation. In our study, \({{\varvec{\Lambda}}}_{9}\) has been used.

$${\rho }_{\rm GND}\sim \frac{3}{2b}\sum_{i}\sum_{j}{\varvec{\Lambda}},$$
(B1)

where \({\varvec{\Lambda}}\) denotes the Nye tensor and \(b\) is the magnitude of the Burgers vector. Further, the Nye tensor can also be expressed in terms of lattice curvature as given by Pantleon[91]

$${\Lambda }_{ik}={\kappa }_{ki}-{\delta }_{ki}{\kappa }_{mm}$$
(B2)

where \({\varvec{\kappa}}\) is the curvature tensor and \({\delta }_{ji}\) is the Kronecker delta. The curvature tensor can be written in terms of the disorientation vector as \({\kappa }_{kl}=\frac{\Delta {\theta }_{k}}{\Delta {x}_{l}}.\) Only 6 components of the lattice curvature tensor can then be derived. It is to be noted that in this method derivatives along the third direction (normal to the surface) cannot be accessed. This may lead to the underestimation of GND density. Nonetheless, this technique has been used for estimating the GND density from experimental microstructures in the past literature[60,92,93,94,95] and also in our study. The trick is to use optimized EBSD step size[47] for GND estimation, which has been followed in the present study as well.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prakash, A., Tak, T.N., Anand, A. et al. Mechanistic Origin of Orientation-Dependent Substructure Evolution in Aluminum and Aluminum-Magnesium Alloys. Metall Mater Trans A 53, 2689–2707 (2022). https://doi.org/10.1007/s11661-022-06698-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06698-y

Navigation