Skip to main content
Log in

Non-octahedral-like dislocation glides in aluminum induced by athermal effect of electric pulse

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The dislocation movements under the action of electric pulses (athermal effect) at cryogenic conditions were studied by ex situ transmission electron microscopy (TEM) observations and slip trace analysis innovatively. By applying electric pulses directly through aluminum TEM samples in a liquid nitrogen bath, plenty of non-octahedral-like dislocation glides generally forming at high temperatures (e.g., >453 K for aluminum) were observed at cryogenic temperatures (<130 K). Occurrence of the non-octahedral-like dislocation glides indicates a substantial increase in the degrees of freedom for dislocation glides, offering a new/complementary explanation for the acceleration effect of electric pulses on dislocation movements, especially in the sole athermal effect. In comparison, previous theories relied on extra driving force and/or increased dislocation mobility on the octahedral planes in a face-centered cubic metal. The athermal effects of electric pulse were discussed and the selective heating at the dislocation cores was proposed to account for non-octahedral-like dislocation glides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. W. Li, Y. Shen, and C. Xie: Effects of electric pulses on annealing hardening of submicrometre grained copper. Mater. Sci. Technol. 31 (13), 1577 (2015).

    Article  CAS  Google Scholar 

  2. H. Conrad, N. Karam, S. Mannan, and A.F. Sprecher: Effect of electric current pulses on the recrystallization kinetics of copper. Scr. Mater. 22, 235 (1988).

    CAS  Google Scholar 

  3. L. Guan, G. Tang, and P.K. Chu: Recent advances and challenges in electroplastic manufacturing processing of metals. J. Mater. Res. 25 (07), 1215 (2011).

    Article  Google Scholar 

  4. Q. Xu, L. Guan, Y. Jiang, G. Tang, and S. Wang: Improved plasticity of Mg–Al–Zn alloy by electropulsing tension. Mater. Lett. 64 (9), 1085 (2010).

    Article  CAS  Google Scholar 

  5. G. Tang, J. Zhang, Y. Yan, H. Zhou, and W. Fang: The engineering application of the electroplastic effect in the cold-drawing of stainless steel wire. J. Mater. Process. Technol. 137 (1–3), 96 (2003).

    Article  CAS  Google Scholar 

  6. H.K.D.H. Bhadeshia: The electrical processing of materials. Mater. Sci. Technol. 31 (13), 1521 (2015).

    Article  CAS  Google Scholar 

  7. X. Li, F. Wang, X. Li, G. Tang, and J. Zhu: Improvement of formability of Mg–3Al–1Zn alloy strip by electroplastic-differential speed rolling. Mater. Sci. Eng., A 618, 500 (2014).

    Article  CAS  Google Scholar 

  8. S.A. Baranov, V.I. Staschenko, A.V. Sukhov, O.A. Troitskiy, and A.V. Tyapkin: Electroplastic metal cutting. Russ. Electr. Eng. 82 (9), 477 (2011).

    Article  Google Scholar 

  9. H-D. Nguyen-Tran, H-S. Oh, S-T. Hong, H.N. Han, J. Cao, S-H. Ahn, and D-M. Chun: A review of electrically-assisted manufacturing. Int. J. Precis. Eng. Manuf. Technol. 2 (4), 365 (2015).

    Article  Google Scholar 

  10. Z. Xu, G. Tang, S. Tian, F. Ding, and H. Tian: Research of electroplastic rolling of AZ31 Mg alloy strip. J. Mater. Process. Technol. 182 (1–3), 128 (2007).

    Article  CAS  Google Scholar 

  11. H. Song and Z-j. Wang: Effect of electropulsing on dislocation mobility of titanium sheet. Trans. Nonferrous Met. Soc. China 22 (7), 1599 (2012).

    Article  CAS  Google Scholar 

  12. V.V. Stolyarov: Electroplastic effect in nanostructured titanium alloys. Rev. Adv. Mater. Sci. 31, 163 (2012).

    CAS  Google Scholar 

  13. O.A. Troitskii and V.I. Likhtman: Anisotropy of the effect of electronic and irradiation on the process of deformation of zinc single crystals in the brittle state. Dokl. Akad. Nauk SSSR 148, 332 (1963).

    CAS  Google Scholar 

  14. A.F. Sprecher, S.L. Mannan, and H. Conrad: Overview no. 49 on the mechanisms for the electroplastic effect in metals. Acta Mater. 37 (7), 1145 (1986).

    Article  Google Scholar 

  15. Y.I. Boiko, Y.E. Geguzin, and Y.I. Klinchuk: Drag of dislocations by an electron wind in metals. Zh. Eksp. Teor. Fiz. 81, 2175 (1981).

    CAS  Google Scholar 

  16. Z. Suo: Dislocation climb in the electron wind. Mater. Res. Soc. Symp. Proc. 338, 379 (1994).

    Article  CAS  Google Scholar 

  17. S.W. Nam, H.S. Chung, Y.C. Lo, L. Qi, J. Li, Y. Lu, A.T. Johnson, Y. Jung, P. Nukala, and R. Agarwal: Electrical wind force-driven and dislocation-templated amorphization in phase-change nanowires. Science 336 (6088), 1561 (2012).

    Article  CAS  Google Scholar 

  18. V.V. Stolyarov: Electroplastic effect in nanocrystalline and amorphous alloys. Mater. Sci. Technol. 31 (13), 1536 (2015).

    Article  CAS  Google Scholar 

  19. M.I. Molotskii and V. Fleurov: Magnetic effects in electroplasticity of metals. Phys. Rev. B. 52, 15829 (1995).

    Article  CAS  Google Scholar 

  20. M.I. Molotskii: Possible mechanism of the magetoplastic effect. Sov. Phys. Solid State 33, 1760 (1991).

    Google Scholar 

  21. M.I. Molotskii: Negative magnetoplastic effect in nonmagnetic crystals. Phys. Solid State 35, 5 (1993).

    Google Scholar 

  22. V.I. Stashenko and O.A. Troitskii: Influence of pulsed current peak on the creep rate of zinc crystals. Strength Mater. 14, 1337 (1982).

    Article  Google Scholar 

  23. P.D. Desai, H.M. James, and C.Y. Ho: Electric resistivity of aluminum and manganese. J. Phys. Chem. Ref. Data 13, 1131 (1984).

    Article  CAS  Google Scholar 

  24. H.D. Hibbit, B.I. Karlsson, E.P. Sorensen: ABAQUS User Manual, Version 6.12. (Simulia, Providence, 2012).

    Google Scholar 

  25. D. Caillard and J.L. Martin: Microstructure of aluminium during creep at intermediate temperatures—III. The rate controlling process. Acta Metall. 31, 813 (1983).

    Article  CAS  Google Scholar 

  26. D. Caillard and J.L. Martin: Microstructure of aluminium during creep at intermediate temperature—II. In situ study of subboundary properties. Acta Metall. 30, 791 (1982).

    Article  CAS  Google Scholar 

  27. D. Caillard and J.L. Martin: Microstructure of aluminium during creep at intermediate temperature—I. dislocation networks after creep. Acta Metall. 30, 437 (1981).

    Article  Google Scholar 

  28. D. Caillard and J.L. Martin: Glide of dislocations in non-octahedral planes of fcc metals: A review. Int. J. Mater. Res. 100, 1403 (2009).

    Article  CAS  Google Scholar 

  29. M. Carrard and J.L. Martin: A study of (001) glide in [112] aluminium single crystals II. Microscopic mechanism. Philos. Mag. A 58 (3), 491 (1988).

    Article  CAS  Google Scholar 

  30. M. Carrard and J.L. Martin: A study of (001) glide in [112] aluminium single crystals I. Creep charateristics. Philos. Mag. A 56 (3), 391 (1987).

    Article  CAS  Google Scholar 

  31. K. Okazaki, M. Kagawa, and H. Conrad: An evaluation of the contributions of skin, pinch and heating effects to the electroplastic effect in titatnium. Mater. Sci. Eng. 45, 109 (1980).

    Article  CAS  Google Scholar 

  32. W. Zhang, M.L. Sui, Y.Z. Zhou, and D.X. Li: Evolution of microstructures in materials induced by electropulsing. Micron 34 (3–5), 189 (2003).

    Article  CAS  Google Scholar 

  33. Y. Kamimura, K. Edagawa, and S. Takeuchi: Experimental evaluation of the Peierls stresses in a variety of crystals and their relation to the crystal structure. Acta Mater. 61, 294 (2013).

    Article  CAS  Google Scholar 

  34. D. Caillard, M. Legros, and A. Couret: Extrinsic obstacles and loop formation in deformed metals and alloys. Phlos. Mag. 93 (1–3), 203 (2013).

    Article  CAS  Google Scholar 

  35. C. Wert and R. Thomson: Solid State Physics (Mir, Moscow City, 1969).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The research was supported by the National Science Foundation of China (NSFC) under Project No. 51471107, 50971090 and by Center for Compression Science, Chinese Academy of Engineering Physics (Grant No. YK 2015–0602005), and by State Key Development Program for Basic Research of China (973 Programs) (Grant No. 2012CB619600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Shen, Y., Liu, H. et al. Non-octahedral-like dislocation glides in aluminum induced by athermal effect of electric pulse. Journal of Materials Research 31, 1193–1200 (2016). https://doi.org/10.1557/jmr.2016.90

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.90

Navigation