Skip to main content
Log in

Direct Experimental Observations on Concurrent Microstructure and Magnetic Property Developments in Non-Grain Oriented Electrical Steel

  • Communication
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Non-grain oriented electrical steel, with minor in-grain orientation gradients, was subjected to interrupted tensile deformations and concurrent microtexture, magnetic property and residual stress measurements. After the upper yield point, clear signatures of mechanical stress relief were observed. Changes in orientation gradients led to annihilation of low-angle (1 to 3 deg) boundaries. Prior deformation compressive residual stresses became tensile and magnetic properties improved. Beyond an optimum true strain of 0.01, this boundary annihilation ceased, compressive stresses were generated, and magnetic properties degraded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. H. Shimanaka, Y. Ito, K. Matsumara and B. Fukuda: J. Mag. Mag. Mater., 1982, vol.26, pp. 57-64.

    Article  Google Scholar 

  2. G. Lyudkovsky, P.K. Rastogi and M. Bala: J. Metals, 1986, vol.38, pp.18-26.

    Google Scholar 

  3. Yoshihiko Oda, Masaaki Kohno and Atsuhito Honda: J. Mag. Mag. Mater., 2008, vol.320, pp. 2430-2435.

    Article  Google Scholar 

  4. A.J. Moses: J. Mater. Engg. Perf., 1992, vol. 1, pp. 235-244.

    Article  Google Scholar 

  5. Yousuke Kurosaki, Hisashi Mogi, Hiroyasu Fujii, Takeshi Kubota and Morio Shiozaki: J. Mag. Mag. Mater., 2008, vol. 320, pp. 2474-2480.

    Article  Google Scholar 

  6. F.J.G. Landgraf, M. Emura, K. Ito and P.S.G. Carvalho: J. Mag. Mag. Mater., 2000, vol. 215, pp. 94-96.

    Article  Google Scholar 

  7. S.K. Shekhawat, V. basavaraj, V.D. Hiwarker, J. Dumbre, A. Ingle, K.G. Suresh, and I. Samajadar: ISIJ Int., 2012, vol. 52, pp. 2100–08.

    Article  Google Scholar 

  8. V. Permiakov, L. Dupre, D. Makaveev and J. Melkebeek: J. Appl. Phys., 2002, vol. 91, pp. 7854-7856.

    Article  Google Scholar 

  9. Erik Nes: Progress in Materials Science,1998, vol. 41, pp.129-193.

    Article  Google Scholar 

  10. U.F. Kocks and H. Mecking: Progress in Materials Science, 2003, vol 48, pp.171-273.

    Article  Google Scholar 

  11. I. Gutierrez and M.A. Altuna: Acta Materialia, 2008, vol. 56, pp. 4682-4690.

    Article  Google Scholar 

  12. P.S. Prevey: Metals Handbook, vol. 10, American Society for Metals, Metals Park, 1986, pp. 380–92.

  13. P.J. Withers and H.K.D.H. Bhadeshia: Materials Science and Technology, 2001, vol. 17, pp 355-365.

    Article  Google Scholar 

  14. B. Verlinden, J. Driver, I. Samajdar, and R.D. Doherty: in Pergamon Materials Series: Series, R.W. Cahn, ed., Elsevier, Amsterdam, 2007, ISBN-978-0-08- 044497-0.

  15. A. Chaudhury, R. Khatirkar, N.N. Viswanathan, V. Singal, A. Ingle, S. Joshi and I. Samajdar: J. Mag. Mag. Mater., 2007, vol. 313, pp. 21-28.

    Article  Google Scholar 

  16. J.W. Shilling and G.L. Houze: IEEE Trans. Magn.,1974, vol. 10, pp. 195-223.

    Article  Google Scholar 

  17. T. Nozawa, M. Mizogami, H. Mogi and Y. Matsuo: IEEE Trans. Magn., 1996, vol. 32, 572-589.

    Article  Google Scholar 

  18. F. Ossart, E. Hug, O. Hubert, C. Buvat and R. Billardon: IEEE Trans. Magn., 2000, vol. 36, PP. 3137-3140.

    Article  Google Scholar 

  19. S. Lazreg and O. Hubert: IEEE Trans. Magn., 2012, vol. 48, pp. 1273-1276.

    Article  Google Scholar 

  20. D. Rao, D. Wang, L. Chen and C.Ni: Int. J. Fatigue, 2007, vol. 29, pp. 192-196.

    Article  Google Scholar 

  21. A.S.M.Y. Munsi, A. J. Waddell and C. A. Walker: Materials Science and Technology, 2001, vol. 17, pp. 601-605.

    Article  Google Scholar 

  22. M.R. James: Advances in Surface Treatments: Technology-Applications-Effects, vol. 4, Pergamon Press, Oxford, 1987, pp. 349–65.

    Google Scholar 

  23. S.D. WASHKO: J. Mag. Mag. Mater., 1980,vol. 19, pp. 349-352.

    Article  Google Scholar 

Download references

The authors would like to acknowledge the use of the National Facility of Texture & OIM (a DST-IRPHA facility) for this study. The authors would also like to acknowledge financial, material, and magnetic measurement support from Crompton Greaves Global R&D Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Shekhawat.

Additional information

Manuscript submitted December 2, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shekhawat, S.K., Basavaraj, V., Hiwarkar, V.D. et al. Direct Experimental Observations on Concurrent Microstructure and Magnetic Property Developments in Non-Grain Oriented Electrical Steel. Metall Mater Trans A 45, 3695–3698 (2014). https://doi.org/10.1007/s11661-014-2342-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2342-x

Keywords

Navigation