Skip to main content
Log in

Effects of Annealing Treatment Prior to Cold Rolling on the Edge Cracking Phenomenon of Ferritic Lightweight Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Effects of annealing treatment from 923 K to 1023 K (650 °C to 750 °C) prior to cold rolling on the edge cracking phenomenon of a ferritic lightweight steel were investigated. The edge cracking was severely found in the hot-rolled and 923 K (650 °C)-annealed steels after cold rolling, whereas it hardly occurred in the 1023 K (750 °C)-annealed steel. As the annealing temperature increased, lamellar κ-carbides were dissolved and coarsened, and most of the κ-carbides continuously formed along boundaries between ferrite and κ-carbide bands disappeared. Microstructural observation of the deformed region of tensile specimens revealed that the removal of band boundary κ-carbides reduced the difference in tensile elongation along the longitudinal direction (LD) and transverse direction (TD), which consequently led to the reduction in edge cracking. The 1023 K (750 °C)-annealed steel showed fine ferrite grain size, weak texture, and decomposed band structure after subsequent cold rolling and intercritical annealing, because κ-carbides actively worked as nucleation sites of ferrite and austenite. The present annealing treatment prior to cold rolling, which was originally adopted to prevent edge cracking, also beneficially modified the final microstructure of lightweight steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. JEOL is a trademark for Japan Electron Optics Ltd., Tokyo.

References

  1. P.J. Jacques: Curr. Opin. Solid State Mater. Sci., 2004, vol. 8, pp. 259–65.

    Article  Google Scholar 

  2. K.H. Kwon, J.S. Jeong, J.-K. Choi, Y.M. Koo, Y. Tomota, and N.J. Kim: Met. Mater. Int., 2012, vol. 18, pp. 751–55.

    Article  Google Scholar 

  3. S. Zaefferer, J. Ohlert, and W. Bleck: Acta Mater., 2004, vol. 52, pp. 2765–78.

    Article  Google Scholar 

  4. I.B. Timokhina, P.D. Hodgson, and E.V. Pereloma: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 2331–41.

    Article  Google Scholar 

  5. J. Bouquerel, K. Verbeken, and B.C. De Cooman: Acta Mater., 2006, vol. 54, pp. 1443–56.

    Article  Google Scholar 

  6. G. Frommeyer and U. Brüx: Steel Res. Int., 2006, vol. 77, pp. 627–33.

    Google Scholar 

  7. N. Lim, H.S. Park, S. Kim, and C.G. Park: Met. Mater. Int., 2012, vol. 18, pp. 647–54.

    Article  Google Scholar 

  8. H. Kim, D.-W. Suh, and N.J. Kim: Sci. Technol. Adv. Mater., 2013, vol. 14, pp. 1–11.

    Article  Google Scholar 

  9. D.-W. Suh, S.-J. Park, T.-H. Lee, C.-S. Oh, and S.-J. Kim: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 397–408.

    Article  Google Scholar 

  10. H. Huang, D. Gan, and P.W. Kao: Scripta Metall. Mater., 1994, vol. 30, pp. 499–504.

    Article  Google Scholar 

  11. W.K. Choo, J.H. Kim, and J.C. Yoon: Acta Mater., 1997, vol. 45, pp. 4877–85.

    Article  Google Scholar 

  12. C.L. Lin, C.G. Chao, H.Y. Bor, and T.F. Liu: Mater. Trans., 2010, vol. 51, pp. 1084–88.

    Article  Google Scholar 

  13. Y. Kimura, K. Handa, K. Hayashi, and Y. Mishima: Intermetallics, 2004, vol. 12, pp. 607–17.

    Article  Google Scholar 

  14. K.M. Chang, C.G. Chao, and T.F. Liu: Scripta Mater., 2010, vol. 63, pp. 162–65.

    Article  Google Scholar 

  15. Y. Kimura, K. Hayashi, K. Handa, and Y. Mishima: Mater. Sci. Eng., 2002, vols. A329–A331, pp. 680–85.

    Article  Google Scholar 

  16. R.K. You, P.-W. Kao, and D. Gan: Mater. Sci. Eng., 1989, vol. A117, pp. 141–48.

    Article  Google Scholar 

  17. S.Y. Han, S.Y. Shin, H.J. Lee, B.-J. Lee, S. Lee, N.J. Kim, and J.-H. Kwak: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 843–53.

    Article  Google Scholar 

  18. S.Y. Han, S.Y. Shin, S. Lee, N.J. Kim, J.-H. Kwak, and K.-G. Chin: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 138–46.

    Article  Google Scholar 

  19. D.A. Porter and K.E. Easterling: Phase Transformation in Materials, 2nd ed., Chapman & Hall, London, 1992, ch. 4.

  20. F.D’Errico: J. Fail. Anal. Prev., 2010 vol. 10, pp. 351–57.

    Article  Google Scholar 

  21. A.A. Benzerga, J. Besson, and A. Pineau: Acta Mater., 2004, vol. 52, pp. 4623–38.

    Article  Google Scholar 

  22. E. Ervasti and U. Ståhlberg: J. Mater. Process. Technol., 2000, vol. 101, pp. 312–21.

    Article  Google Scholar 

  23. H.-J. Lee, S.S. Sohn, S. Lee, J.-H. Kwak, and B.-J. Lee: Scripta Mater., 2013, vol. 68, pp. 339–42.

    Article  Google Scholar 

  24. ASTM E517-00: Standard Test Method for Plastic Strain Ratio r for Sheet Metal, Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA, 2000, vol. 03.01, pp. 1–8.

  25. B. Sundman, B. Jansson, and J.-O. Andersson: CALPHAD, 1985, vol. 9, pp. 153–90.

    Article  Google Scholar 

  26. TCFE2000: The Thermo-Calc Steels Database, Upgraded by B.-J. Lee and B. Sundman at KTH, KTH, Stockholm, 1999.

  27. K.-G. Chin, H.-J. Lee, J.-H. Kwak, J.-Y. Kang, and B.-J. Lee: J. Alloys Compd., 2010, vol. 505, pp. 217–23.

    Article  Google Scholar 

  28. C.Y. Chao and T.F. Liu: Metall. Trans. A, 1993, vol. 24A, pp. 1957–63.

    Article  Google Scholar 

  29. P. Kratochvíl, F. Dobeš, and V. Vodičková: Intermetallics, 2009, vol. 17, pp. 39–45.

    Article  Google Scholar 

  30. L.E Miller and G.C. Smith: J. Iron Steel Inst., 1970, vol. 208, pp. 998–1005.

    Google Scholar 

  31. Y.-T. Wang, Y. Adachi, K. Nakajima, and Y. Sugimoto: Acta Mater., 2010, vol. 58, pp. 4849–58.

    Article  Google Scholar 

  32. K.-H. Kim, S.-D. Park, J.-H. Kim, and C.-M. Bae: Metall. Mater. Int., 2012, vol. 18, pp. 917–21.

    Article  Google Scholar 

  33. M. Calcagnotto, D. Ponge, and D. Raabe: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 37–46.

    Article  Google Scholar 

  34. S.S. Sohn, B.-J. Lee, S. Lee, N.J. Kim, and J.-H. Kwak: Acta Mater., 2013, vol. 61, pp. 5050–66.

    Article  Google Scholar 

  35. E. Jimenez-Melero, N.H. Van Dijk, L. Zhao, J. Sietsma, S.E. Offerman, J.P. Wright, and S. van der Zwaag: Acta Mater., 2007, vol. 55, pp. 6713–23.

    Article  Google Scholar 

  36. L. Samek, E. De Moor, J. Penning, and B.C. De Cooman: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 109–24.

    Article  Google Scholar 

  37. W.J. Dan, Z.G. Hu, and W.G. Zhang: Met. Mater. Int., 2013, vol. 19, pp. 251–57.

    Article  Google Scholar 

  38. K. Wallin, T. Saario, and K. Törrönen: Int. J. Fract., 1986, vol. 32, pp. 201–09.

    Article  Google Scholar 

  39. C.-H. Seo, K.H. Kwon, K. Choi, K.-H. Kim, J.H. Kwak, S. Lee, and N.J. Kim: Scripta Mater., 2012, vol. 66, pp. 519–22.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Knowledge Economy under Grant No. 10031723-2011-21 and BK21 Plus Center for Creative Industrial Materials. The authors thank Mr. Hyuk-Joong Lee, POSTECH, and Dr. Kayoung Choi, POSCO, for their help with the thermodynamic calculation and TEM microstructural analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunghak Lee.

Additional information

Manuscript submitted December 10, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sohn, S.S., Lee, BJ., Kwak, JH. et al. Effects of Annealing Treatment Prior to Cold Rolling on the Edge Cracking Phenomenon of Ferritic Lightweight Steel. Metall Mater Trans A 45, 3844–3856 (2014). https://doi.org/10.1007/s11661-014-2332-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2332-z

Keywords

Navigation