Skip to main content
Log in

Effect of Carbon Content on Cracking Phenomenon Occurring during Cold Rolling of Three Light-Weight Steel Plates

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Effects of carbon content on cracking phenomenon, which often occurred in cold-rolled light-weight steel plates, were investigated in this study. Three steels were fabricated by varying carbon content, and their microstructures and tensile properties were investigated. The steel containing low carbon content of 0.1 wt pct consisted of thin κ-carbide bands, coarse band boundary κ-carbides, and ferrites. As the carbon content increased, volume fractions of κ-carbide bands and total κ-carbides increased, and band boundary κ-carbides were finely distributed in relatively wide band boundary areas. Microstructural observation of the deformed region of tensile specimens revealed that coarse κ-carbides continuously formed along band boundaries worked to initiate the cracking or to facilitate the abrupt crack propagation into ferrites or band boundaries in a cleavage fracture mode, while bands densely populated with fine, lamellar κ-carbides did not play a critical role in the cracking. Thus, the increase in carbon content effectively minimized the formation of band boundary carbides and reduced their size, thereby resulting in the prevention of cracking during cold rolling and in the simultaneous improvement of ductility and strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

  2. INSTRON is a trademark of Special Metals Corporation, New Hartford, NY.

References

  1. K. Sipos, L. Remy, and A. Pineau: Metall. Mater. Trans. A, 1976, vol. 7A, pp. 857–64.

    CAS  Google Scholar 

  2. L. Remy and A. Pineau: Mater. Sci. Eng., 1977, vol. A28, pp. 99–107.

    Google Scholar 

  3. O. Bouaziz and N. Guelton: Mater. Sci. Eng., 2001, vol. A319, pp. 246–49.

    Google Scholar 

  4. G. Frommeyer and J.A. Jiménezet: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 295–300.

    Article  CAS  Google Scholar 

  5. G. Frommeyer, U. Brüx, and P. Neumann: ISIJ Int., 2003, vol. 43, pp. 438–46.

    Article  CAS  Google Scholar 

  6. Y.W. Kim, N. Kang, Y. Park, I. Choi, G. Kim, S. Kim, and K. Cho: Kor. J. Met. Mater., 2008, vol. 46, pp. 780–88.

    CAS  Google Scholar 

  7. B.-W. Choi, D.-H. Seo, and J.-I. Jang: Met. Mater. Int., 2009, vol. 15, pp. 373–78.

    Article  CAS  Google Scholar 

  8. Y. Kimura, K. Handa, K. Hayashi, and Y. Mishima: Intermetallics, 2004, vol. 12, pp. 607–17.

    Article  CAS  Google Scholar 

  9. A. Perlade and P. Maugis: Discussion Meeting in the Development of Innovative Iron Al Alloys, Arcelor Research, Toulouse, France, 2005.

  10. J.M. Jang, S.J. Kim, N.H. Kang, K.M. Cho, and D.W. Suh: Met. Mater. Int., 2009, vol. 15, pp. 909–16.

    Article  CAS  Google Scholar 

  11. O. Grässel and G. Frommeyer: Mater. Sci. Technol., 1998, vol. 14, pp. 1213–16.

    Google Scholar 

  12. O. Grässel, L. Krüger, G. Frommeyer, and L.W. Meyer: Int. J. Plast., 2000, vol. 16, pp. 1391–1409.

    Article  Google Scholar 

  13. Z. Tang and W. Strumpf: Mater. Character., 2008, vol. 59, pp. 717–28.

    Article  CAS  Google Scholar 

  14. S. Han, H. Seong, Y. Ahn, C.I. Garcia, A.J. DeArdo, and I. Kim: Met. Mater. Int., 2009, vol. 15, pp. 521–29.

    Article  CAS  Google Scholar 

  15. C. Scott, D. Chaleix, P. Barges, and V. Rebischung: Scripta Mater., 2002, vol. 47, pp. 845–49.

    Article  CAS  Google Scholar 

  16. R.G. Baligidad, U. Prakash, and A. Radhakrishna: Mater. Sci. Eng., 1998, vol. A255, pp. 162–67.

    CAS  Google Scholar 

  17. R.G. Baligidad, U. Prakash, A. Radhakrishna, V.R. Rao, P.K. Rao, and N.B. Ballal: Scripta Mater., 1997, vol. 36, pp. 667–71.

    Article  CAS  Google Scholar 

  18. R.G. Baligidad and A. Radhakrishna: Mater. Sci. Eng., 2000, vol. A287, pp. 17–24.

    CAS  Google Scholar 

  19. J.H. Chen, G.Z. Wang, C. Yan, H. Ma, and L. Zhu: Int. J. Fract., 1997, vol. 83, pp. 105–20.

    Article  CAS  Google Scholar 

  20. D.A. Porter and K.E. Easterling: Phase Transformation in Materials, 2nd ed., Chapman & Hall, London, 1992, Ch. 4.

  21. K. Yamamoto, T. Hasegawa, and J. Takamura: ISIJ Int., 1996, vol. 36, pp. 80–86.

    Article  CAS  Google Scholar 

  22. Y. Tomita, N. Saito, T. Tsuzuki, Y. Tokunaga, and K. Okamoto: ISIJ Int., 1994, vol. 34, pp. 829–35.

    Article  CAS  Google Scholar 

  23. U.G. Gang, J.C. Lee, and W.J. Nam: Met. Mater. Int., 2009, vol. 15, pp. 719–25.

    Article  CAS  Google Scholar 

  24. A.O. Kluken, O. Grong, and J. Hjelen: Metall. Trans. A, 1991, vol. 22A, pp. 657–64.

    CAS  Google Scholar 

  25. K. Wallin, T. Saario, and K. Törrönen: Int. J. Fract., 1987, vol. 32, pp. 201–10.

    Article  Google Scholar 

  26. C.Y. Chao and T.F. Liu: Metall. Mater. Trans. A, 1993, vol. 23A, pp. 1957–63.

    Google Scholar 

  27. P. Kratochvíl: Intermetallics, 2009, vol. 17, pp. 39–45.

    Article  Google Scholar 

  28. C.A.N. Lanzillotto and F.B. Pickering: Met. Sci., 1982, vol. 16, pp. 371–82.

    Article  CAS  Google Scholar 

  29. S. Lee, C.G. Lee, D. Kwon, and N.J. Kim: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 1241–50.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by POSCO under Contract No. 2008Y221. The authors thank Professor Byeong-Joo Lee and Mr. Chang-hyo Seo, POSTECH, for their help with the alloying effect and microstructural analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunghak Lee.

Additional information

Manuscript submitted April 9, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, S.Y., Shin, S.Y., Lee, S. et al. Effect of Carbon Content on Cracking Phenomenon Occurring during Cold Rolling of Three Light-Weight Steel Plates. Metall Mater Trans A 42, 138–146 (2011). https://doi.org/10.1007/s11661-010-0456-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0456-3

Keywords

Navigation