Skip to main content
Log in

Evaluation on electrochemical properties of lithium-ion battery–based PMMA-PLA blend incorporation of [EDIMP] TFSI hybrid gel polymer electrolyte

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

This study focuses on developing a novel hybrid gel polymer electrolyte (HGPE) for lithium-ion batteries. The HGPEs comprise a hybrid polymer of polymethyl methacrylate (PMMA) and polylactic acid (PLA), doped with 20 wt.% lithium bis (trifluoromethylsulfonyl) imide salt (LiTFSI) and incorporated with various contents of ionic liquid, namely ethyl-dimethyl-propylammonium bis(trifluoromethylsulfonyl)imide ([EDIMP]TFSI) is successfully prepared, and the lithium-ion batteries performance was investigated. This work aims to investigate the influence of the ionic liquid on the electrical properties, cation transference number (tLi+), electrochemical stability window, and charge-discharge performance of the PMMA-PLA based HGPE systems. Among the different samples tested, the HGPE containing 20 wt.% [EDIMP]TFSI (E-TFSI 20) exhibited the most promising results. It achieved an optimum ionic conductivity of 3.90 × 10−3 S cm−1, an increased tLi+ from 0.63 to 0.79, and an extended electrochemical stability window from 4.3 to 5V. Temperature dependence studies revealed that all the HGPE systems followed the Arrhenius characteristic, and their activation energies were calculated. Dielectric studies revealed ionic behavior and suitable capacitance with varying frequencies of the HGPEs system. The most favorable electrolyte was selected based on the highest ionic conductivity observed in each HGPE systems. It was utilized in a Li metalǀHGPEsǀgraphite cell configuration. The discharge capacity of the cells using LiTFSI 20 and E-TFSI 20 electrolytes were measured as 152.06 mAh g−1 and 71.15 mAh g−1, respectively, at a current density of 3.72 A g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

No data was used for the research described in the article.

References

  1. Niu H, Wang L, Guan P, Zhang N, Yan C, Ding M, Guo X, Huang T, Hu X (2021) Recent advances in application of ionic liquids in electrolyte of lithium ion batteries. J Energy Storage 40:102659

    Article  Google Scholar 

  2. Chang X, Zhao Y-M, Yuan B, Fan M, Meng Q, Guo Y-G, Wan L-J (2023) Solid-state lithium-ion batteries for grid energy storage: opportunities and challenges. Sci China Chem:1–24

  3. Fenton DE (1973) Complexes of alkali metal ions with poly (ethylene oxide). Polym 14:589

    Article  CAS  Google Scholar 

  4. Rollo-Walker G, Malic N, Wang X, Chiefari J, Forsyth M (2021) Development and progression of polymer electrolytes for batteries: influence of structure and chemistry. Polym 13(23):4127

    Article  CAS  Google Scholar 

  5. Ngai KS, Ramesh S, Ramesh K, Juan JC (2016) A review of polymer electrolytes: fundamental, approaches and applications. Ionics 22(8):1259–1279

    Article  CAS  Google Scholar 

  6. Nishshanke G, Arof A, Bandara T (2020) Review on mixed cation effect in gel polymer electrolytes for quasi solid-state dye-sensitized solar cells. Ionics 26:3685–3704

    Article  CAS  Google Scholar 

  7. Arya A, Sharma A (2017) Polymer electrolytes for lithium ion batteries: a critical study. Ionics 23(3):497–540

    Article  CAS  Google Scholar 

  8. Singh P, Sachdeva A, Bhargava C (2022) Polymer electrolyte a novel material for electrochemical devices: a review. In: Journal of Physics: Conference Series. IOP Publishing, p 012021

    Google Scholar 

  9. Cheng X, Pan J, Zhao Y, Liao M, Peng H (2018) Gel polymer electrolytes for electrochemical energy storage. J Adv Energy Mater 8(7):1702184

    Article  Google Scholar 

  10. Zhou D, Shanmukaraj D, Tkacheva A, Armand M, Wang G (2019) Polymer electrolytes for lithium-based batteries: advances and prospects. Chem 5(9):2326–2352

    Article  CAS  Google Scholar 

  11. Bocharova V, Sokolov AP (2020) Perspectives for polymer electrolytes: a view from fundamentals of ionic conductivity. Macromolecules 53(11):4141–4157

    Article  CAS  Google Scholar 

  12. Fenton D (1973) Complexes of alkali metal ions with poly (etylene oxide). Polym 14:589

    Article  CAS  Google Scholar 

  13. Feuillade G, Perche P (1975) Ion-conductive macromolecular gels and membranes for solid lithium cells. J Appl Electrochem 5(1):63–69

    Article  CAS  Google Scholar 

  14. Baskoro F, Wong HQ, Yen H-J (2019) Strategic structural design of a gel polymer electrolyte toward a high efficiency lithium-ion battery. ACS Appl Energy 2(6):3937–3971

    Article  CAS  Google Scholar 

  15. Maheshwaran C, Mishra K, Kanchan D, Kumar D (2020) Mg2+ conducting polymer gel electrolytes: physical and electrochemical investigations. Ionics 26:2969–2980

    Article  CAS  Google Scholar 

  16. Prasanna CS, Suthanthiraraj SA (2018) Dielectric and thermal features of zinc ion conducting gel polymer electrolytes (GPEs) containing PVC/PEMA blend and EMIMTFSI ionic liquid. Ionics 24:2631–2646

    Article  CAS  Google Scholar 

  17. Ramesh S, Liew C-W, Ramesh K (2011) Evaluation and investigation on the effect of ionic liquid onto PMMA-PVC gel polymer blend electrolytes. J Non-Cryst Solids 357(10):2132–2138

    Article  CAS  Google Scholar 

  18. Liao Y, Rao M, Li W, Yang L, Zhu B, Xu R, Fu C (2010) Fumed silica-doped poly (butyl methacrylate-styrene)-based gel polymer electrolyte for lithium ion battery. J Membr Sci 352(1-2):95–99

    Article  CAS  Google Scholar 

  19. Liang S, Yan W, Wu X, Zhang Y, Zhu Y, Wang H, Wu Y (2018) Gel polymer electrolytes for lithium ion batteries: Fabrication, characterization and performance. Solid State Ionics 318:2–18

    Article  CAS  Google Scholar 

  20. Deng K, Zeng Q, Wang D, Liu Z, Qiu Z, Zhang Y, Xiao M, Meng Y (2020) Single-ion conducting gel polymer electrolytes: design, preparation and application. J Mater Chem A 8(4):1557–1577

    Article  CAS  Google Scholar 

  21. Mazuki NF, Kufian MZ, Nagao Y, Samsudin AS (2022) Correlation studies between structural and ionic transport properties of lithium-ion hybrid gel polymer electrolytes based PMMA-PLA. J Polym Environ 30(5):1864–1879

    Article  CAS  Google Scholar 

  22. Fong KD, Self J, Diederichsen KM, Wood BM, McCloskey BD, Persson KA (2019) Ion transport and the true transference number in nonaqueous polyelectrolyte solutions for lithium ion batteries. ACS Central Science 5(7):1250–1260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhao X, Tao C-a, Li Y, Chen X, Wang J, Gong H (2020) Preparation of gel polymer electrolyte with high lithium ion transference number using GO as filler and application in lithium battery. Ionics 26:4299–4309

    Article  CAS  Google Scholar 

  24. Tsao C-H, Su H-M, Huang H-T, Kuo P-L, Teng H (2019) Immobilized cation functional gel polymer electrolytes with high lithium transference number for lithium ion batteries. J Membr Sci 572:382–389

    Article  CAS  Google Scholar 

  25. Osada I, de Vries H, Scrosati B, Passerini S (2016) Ionic-liquid-based polymer electrolytes for battery applications. Angew Chem Int Ed 55(2):500–513

    Article  CAS  Google Scholar 

  26. Isikli S, Ryan KM (2020) Recent advances in solid-state polymer electrolytes and innovative ionic liquids based polymer electrolyte systems. Curr Opin Electrochem 21:188–191

    Article  CAS  Google Scholar 

  27. Ravi M, Kim S, Ran F, Kim DS, Lee YM, Ryou M-H (2021) Hybrid gel polymer electrolyte based on 1-methyl-1-Propylpyrrolidinium Bis (Trifluoromethanesulfonyl) imide for flexible and shape-variant lithium secondary batteries. J Membr Sci 621:119018

    Article  CAS  Google Scholar 

  28. Perissi I, Caporali S, Fossati A, Lavacchi A (2011) Corrosion resistance of metallic materials in ionic liquids. Adv Chem Res 6:315–322

    CAS  Google Scholar 

  29. Hayyan M, Ibrahim M, Hayyan A, Hashim MA (2017) Investigating the long-term stability and kinetics of superoxide ion in dimethyl sulfoxide containing ionic liquids and the application of thiophene destruction. Braz J Chem Eng 34:227–239

    Article  CAS  Google Scholar 

  30. Evans J, Vincent CA, Bruce PG (1987) Electrochemical measurement of transference numbers in polymer electrolytes. Polym 28(13):2324–2328

    Article  CAS  Google Scholar 

  31. Osman Z, Ghazali MM, Othman L, Isa KM (2012) AC ionic conductivity and DC polarization method of lithium ion transport in PMMA–LiBF4 gel polymer electrolytes. Results in Physics 2:1–4

    Article  CAS  Google Scholar 

  32. Sa’adun NN, Subramaniam R, Kasi R (2014) Development and characterization of poly (1-vinylpyrrolidone-co-vinyl acetate) copolymer based polymer electrolytes. Sci World J 2014:254215

    Article  Google Scholar 

  33. Hashim N, Subban R (2018) Studies on conductivity, structural and thermal properties of PEO-LiTFSI polymer electrolytes doped with EMImTFSI ionic liquid. In: AIP Conference Proceedings, vol 1. AIP Publishing LLC, p 020021

    Google Scholar 

  34. Chew K, Tan K (2011) The effects of ceramic fillers on PMMA-based polymer electrolyte salted with lithium triflate, LiCF3SO3. Int J Electrochem Sci 6(11):5792–5801

    Article  CAS  Google Scholar 

  35. Yusuf SNF, Yahya R, Arof AK (2017) Ionic liquid enhancement of polymer electrolyte conductivity and their effects on the performance of electrochemical devices. In: Handy S (ed) Progress and Developments in Ionic Liquids. IntechOpen, London, UK, pp 157–183

    Google Scholar 

  36. Mazuki NF, Khairunnisa K, Saadiah MA, Kufian MZ, Samsudin AS (2023) Ionic transport study of hybrid gel polymer electrolyte based on PMMA-PLA incorporated with ionic liquid. Ionics 29(2):625–638

    Article  CAS  Google Scholar 

  37. Khurana S, Chandra A (2018) Ionic liquid-based organic–inorganic hybrid electrolytes: Impact of in situ obtained and dispersed silica. J Polym Sci, Part B: Polym Phys 56(3):207–218

    Article  CAS  Google Scholar 

  38. Chaurasia SK, Singh MP, Singh MK, Kumar P, Saroj A (2022) Impact of ionic liquid incorporation on ionic transport and dielectric properties of PEO-lithium salt-based quasi-solid-state electrolytes: role of ion-pairing. J Mater Sci: Mater Electron 33(3):1641–1656

    CAS  Google Scholar 

  39. Ramesh S, Yahaya AH, Arof AK (2002) Dielectric behaviour of PVC-based polymer electrolytes. Solid State Ionics 152:291–294

    Article  Google Scholar 

  40. Rasali N, Saadiah M, Zainuddin N, Nagao Y, Samsudin A (2020) Ionic transport studies of solid bio-polymer electrolytes based on carboxymethyl cellulose doped with ammonium acetate and its potential application as an electrical double layer capacitor. eXPRESS Polym Lett 14(7):619–637

    Article  CAS  Google Scholar 

  41. Tripathi M, Tripathi SK (2017) Electrical studies on ionic liquid-based gel polymer electrolyte for its application in EDLCs. Ionics 23(10):2735–2746

    Article  CAS  Google Scholar 

  42. Ramlee F, Farhana N, Bashir S, Saidi NM, Omar FS, Ramesh S, Ramesh K, Ramesh S (2021) Electrical property enhancement of poly (vinyl alcohol-co-ethylene)–based gel polymer electrolyte incorporated with triglyme for electric double-layer capacitors (EDLCs). Ionics 27:361–373

    Article  CAS  Google Scholar 

  43. Rasali NMJ, Samsudin AS (2017) Ionic transport properties of protonic conducting solid biopolymer electrolytes based on enhanced carboxymethyl cellulose-NH4Br with glycerol. Ionics 24:1639–1650

    Article  Google Scholar 

  44. Gohel K, Kanchan DK (2019) Effect of PC: DEC plasticizers on structural and electrical properties of PVDF–HFP: PMMA based gel polymer electrolyte system. J Mater Sci - Mater Electron 30(13):12260–12268

    Article  CAS  Google Scholar 

  45. Dissanayake M, Thotawatthage C, Senadeera G, Bandara T, Jayasundara W, Mellander B-E (2013) Efficiency enhancement in dye sensitized solar cells based on PAN gel electrolyte with Pr4NI+ MgI2 binary iodide salt mixture. J Appl Electrochem 43:891–901

    Article  CAS  Google Scholar 

  46. Vignarooban K, Badami P, Dissanayake MAKL, Ravirajan P, Kannan AM (2017) Poly-acrylonitrile-based gel-polymer electrolytes for sodium-ion batteries. Ionics 23(10):2817–2822

    Article  CAS  Google Scholar 

  47. Kumar GG, Sampath S (2003) Electrochemical characterization of poly (vinylidenefluoride)-zinc triflate gel polymer electrolyte and its application in solid-state zinc batteries. Solid State Ionics 160(3-4):289–300

    Article  CAS  Google Scholar 

  48. Verduzco JC, Vergados JN, Strachan A, Marinero EE (2021) Hybrid polymer-garnet materials for all-solid-state energy storage devices. ACS omega 6(24):15551–15558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Singh SK, Gupta H, Balo L, Shalu SVK, Tripathi AK, Verma YL, Singh RK (2018) Electrochemical characterization of ionic liquid based gel polymer electrolyte for lithium battery application. Ionics 24:1895–1906

    Article  CAS  Google Scholar 

  50. Nath G, Dhapola PS, Sahoo N, Singh S, Singh V, Singh PK (2022) Polyvinylpyrrolidone with ammonium iodide and plasticizer ethylene carbonate solid polymer electrolyte for supercapacitor application. J Thermoplast Compos Mater 35(6):879–890

    Article  Google Scholar 

  51. Asnawi A, Hamsan M, Aziz S, Kadir M, Matmin J, Yusof Y (2021) Impregnation of [Emim] Br ionic liquid as plasticizer in biopolymer electrolytes for EDLC application. Electrochim Acta 375:137923

    Article  CAS  Google Scholar 

  52. Ravi M, Song S, Wang J, Nadimicherla R, Zhang Z (2016) Preparation and characterization of biodegradable poly (ε-caprolactone)-based gel polymer electrolyte films. J Ionics 22(5):661–670

    Article  CAS  Google Scholar 

  53. Sheng L, Xie X, Sun Z, Zhao M, Gao B, Pan J, Bai Y, Song S, Liu G, Wang T (2021) Role of separator surface polarity in boosting the lithium-ion transport property for a lithium-based battery. ACS Appl Energy 4(5):5212–5221

    Article  CAS  Google Scholar 

  54. Diederichsen KM, McShane EJ, McCloskey BD (2017) Promising routes to a high Li+ transference number electrolyte for lithium ion batteries. ACS Energy Letters 2(11):2563–2575

    Article  CAS  Google Scholar 

  55. Liu Y, Zeng Q, Li Z, Chen A, Guan J, Wang H, Wang S, Zhang L (2023) Recent development in topological polymer electrolytes for rechargeable lithium batteries. Adv Sci:2206978

  56. RenWei EK (2022) Measurement of lithium transference number in PMMA solid polymer electrolytes doped with micron-sized fillers. J Mech Eng Technol (JMET) 13(2):30–42

    Google Scholar 

  57. Kufian M, Arof A, Ramesh S (2019) PMMA-LiBOB gel polymer electrolytes in lithium-oxygen cell. In: IOP Conference Series: Materials Science and Engineering, vol 1. IOP Publishing, p 012010

    Google Scholar 

  58. Boz B, Ford HO, Salvadori A, Schaefer JL (2021) Porous polymer gel electrolytes influence lithium transference number and cycling in lithium-ion batteries. Electron Mater 2(2):154–173

    Article  Google Scholar 

  59. Abarna S, Hirankumar G (2017) Vibrational, electrical, and ion transport properties of PVA-LiClO4-sulfolane electrolyte with high cationic conductivity. Ionics 23:1733–1743

    Article  CAS  Google Scholar 

  60. Wang Y, Fu L, Shi L, Wang Z, Zhu J, Zhao Y, Yuan S (2019) Gel polymer electrolyte with high Li+ transference number enhancing the cycling stability of lithium anodes. ACS Appl Mater Interfaces 11(5):5168–5175

    Article  CAS  PubMed  Google Scholar 

  61. Karuppasamy K, Theerthagiri J, Vikraman D, Yim C-J, Hussain S, Sharma R, Maiyalagan T, Qin J, Kim H-S (2020) Ionic liquid-based electrolytes for energy storage devices: a brief review on their limits and applications. Polym 12(4):918

    Article  CAS  Google Scholar 

  62. Ghosh A, Wang C, Kofinas P (2010) Block copolymer solid battery electrolyte with high Li-ion transference number. J Electrochem Soc 157(7):A846

    Article  CAS  Google Scholar 

  63. Appetecchi GB, Croce F, Scrosati B (1995) Kinetics and stability of the lithium electrode in poly (methylmethacrylate)-based gel electrolytes. Electrochim Acta 40(8):991–997

    Article  CAS  Google Scholar 

  64. Shah DB, Olson KR, Karny A, Mecham SJ, DeSimone JM, Balsara NP (2017) Effect of anion size on conductivity and transference number of perfluoroether electrolytes with lithium salts. J Electrochem Soc 164(14):A3511

    Article  CAS  Google Scholar 

  65. Li L, Wang J, Yang P, Guo S, Wang H, Yang X, Ma X, Yang S, Wu B (2013) Preparation and characterization of gel polymer electrolytes containing N-butyl-N-methylpyrrolidinium bis (trifluoromethanesulfonyl) imide ionic liquid for lithium ion batteries. Electrochim Acta 88:147–156

    Article  CAS  Google Scholar 

  66. Li W, Pang Y, Liu J, Liu G, Wang Y, Xia Y (2017) A PEO-based gel polymer electrolyte for lithium ion batteries. RSC Adv 7(38):23494–23501

    Article  CAS  Google Scholar 

  67. Isa KM, Othman L, Hambali D, Osman Z (2017) Electrical and electrochemical studies on sodium ion-based gel polymer electrolytes. In: AIP Conference Proceedings, vol 1. AIP Publishing LLC, p 040001

    Google Scholar 

  68. Wang S, Song H, Song X, Zhu T, Ye Y, Chen J, Yu L, Xu J, Chen K (2021) An extra-wide temperature all-solid-state lithium-metal battery operating from− 73°C to 120°C. Energy Storage Mater 39:139–145

    Article  Google Scholar 

  69. Moreno M, Simonetti E, Appetecchi GB, Carewska M, Montanino M, Kim G-T, Loeffler N, Passerini S (2016) Ionic liquid electrolytes for safer lithium batteries. J Electrochem Soc 164(1):A6026

    Article  Google Scholar 

  70. Karuppasamy K, Kim H-S, Kim D, Vikraman D, Prasanna K, Kathalingam A, Sharma R, Rhee HW (2017) An enhanced electrochemical and cycling properties of novel boronic ionic liquid based ternary gel polymer electrolytes for rechargeable Li/LiCoO2 cells. Scientific Reports 7(1):1–11

    Article  CAS  Google Scholar 

  71. Wang Y, Zhong WH (2015) Development of electrolytes towards achieving safe and high-performance energy-storage devices: a review. ChemElectroChem 2(1):22–36

    Article  Google Scholar 

  72. Holmberg RJ, Beauchemin D, Jerkiewicz G (2014) Characteristics of colored passive layers on titanium: morphology, optical properties, and corrosion resistance. ACS Appl Mater Interfaces 6(23):21576–21584

    Article  CAS  PubMed  Google Scholar 

  73. Chowdhury FI, Khalil I, Khandaker M, Rabbani M, Uddin J, Arof A (2020) Electrochemical and structural characterization of polyacrylonitrile (PAN)–based gel polymer electrolytes blended with tetrabutylammonium iodide for possible application in dye-sensitized solar cells. Ionics 26(9):4737–4746

    Article  CAS  Google Scholar 

  74. Dose WM, Xu C, Grey CP, De Volder MF (2020) Effect of anode slippage on cathode cutoff potential and degradation mechanisms in Ni-rich Li-ion batteries. Cell Rep Phys Sci 1(11):100253

    Article  Google Scholar 

  75. Asenbauer J, Eisenmann T, Kuenzel M, Kazzazi A, Chen Z, Bresser D (2020) The success story of graphite as a lithium-ion anode material–fundamentals, remaining challenges, and recent developments including silicon (oxide) composites. Sustain Energy Fuels 4(11):5387–5416

    Article  CAS  Google Scholar 

  76. Müller D, Dufaux T, Birke KP (2019) Model-based investigation of porosity profiles in graphite anodes regarding sudden-death and second-life of lithium ion cells. Batteries 5(2):49

    Article  Google Scholar 

  77. Vorauer T, Kumar P, Berhaut CL, Chamasemani FF, Jouneau P-H, Aradilla D, Tardif S, Pouget S, Fuchsbichler B, Helfen L (2020) Multi-scale quantification and modeling of aged nanostructured silicon-based composite anodes. Commun Chem 3(1):141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wang A, Kadam S, Li H, Shi S, Qi Y (2018) Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries. npj Comput Mater 4(1):15

    Article  Google Scholar 

  79. Chatterjee K, Pathak AD, Lakma A, Sharma CS, Sahu KK, Singh AK (2020) Synthesis, characterization and application of a non-flammable dicationic ionic liquid in lithium-ion battery as electrolyte additive. Sci Rep 10(1):9606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Liu C, Ma X, Xu F, Zheng L, Zhang H, Feng W, Huang X, Armand M, Nie J, Chen H (2014) Ionic liquid electrolyte of lithium bis (fluorosulfonyl) imide/N-methyl-N-propylpiperidinium bis (fluorosulfonyl) imide for Li/natural graphite cells: Effect of concentration of lithium salt on the physicochemical and electrochemical properties. Electrochim Acta 149:370–385

    Article  CAS  Google Scholar 

  81. Armand M, Axmann P, Bresser D, Copley M, Edström K, Ekberg C, Guyomard D, Lestriez B, Novák P, Petranikova M (2020) Lithium-ion batteries–current state of the art and anticipated developments. J Power Sources 479:228708

    Article  CAS  Google Scholar 

  82. Kim D-W (1998) Electrochemical characteristics of a carbon electrode with gel polymer electrolyte for lithium-ion polymer batteries. J Power Sources 76(2):175–179

    Article  CAS  Google Scholar 

  83. Naderi R, Gurung A, Zhou Z, Varnekar G, Chen K, Zai J, Qian X, Qiao Q (2017) Activation of passive nanofillers in composite polymer electrolyte for higher performance lithium-ion batteries. Adv Sustain Syst 1(8):1700043

    Article  Google Scholar 

  84. Ma X, Huang X, Gao J, Zhang S, Deng Z, Suo J (2014) Compliant gel polymer electrolyte based on poly (methyl acrylate-co-acrylonitrile)/poly (vinyl alcohol) for flexible lithium-ion batteries. Electrochim Acta 115:216–222

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Faculty of Industrial Sciences and Technology, UMPSA and Centre for Ionics University of Malaya, UM for the laboratory facilities and Center for Advanced Intelligent Materials, UMPSA for the electrode materials for the completion of this work.

Funding

This study was financially supported by Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA) under Postgraduate Research Scheme (PGRS) No. UMP.05/26.10/03/PGRS210355 (University reference PGRS210355) and UMPSA International Publication Grant (RDU 223304) and UMPSA Distinguish Grant (RDU233001).

Author information

Authors and Affiliations

Authors

Contributions

N.F. Mazuki: Writing – original draft, Methodology, Investigation, Writing – review & editing. M.Z. Kufian: Supervision, Formal analysis, Writing – review & editing. A.S. Samsudin: Writing – review & editing, Validation, Conceptualization, Funding acquisition, Supervision, Visualization.

Corresponding author

Correspondence to A. S. Samsudin.

Ethics declarations

Competing Interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: A.S. SAMSUDIN reports financial support, equipment, drugs, or supplies, and statistical analysis were provided by Universiti Malaysia Pahang Al-Sultan Abdullah. A.S. SAMSUDIN reports financial support was provided by Universiti Malaysia Pahang Al-Sultan Abdullah.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazuki, N.F., Kufian, M.Z. & Samsudin, A.S. Evaluation on electrochemical properties of lithium-ion battery–based PMMA-PLA blend incorporation of [EDIMP] TFSI hybrid gel polymer electrolyte. Ionics 30, 169–182 (2024). https://doi.org/10.1007/s11581-023-05253-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-05253-y

Keywords

Navigation