Skip to main content
Log in

Electrochemical and structural characterization of polyacrylonitrile (PAN)–based gel polymer electrolytes blended with tetrabutylammonium iodide for possible application in dye-sensitized solar cells

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Polyacrylonitrile (PAN)–based gel polymer electrolytes (GPEs) consisting of plasticizers ethylene carbonate (EC) and propylene carbonate (PC) and different compositions of tetrabutylammonium iodide (TBAI) salt have been investigated. The GPEs have been characterized by electrochemical impedance spectroscopy (EIS), linear sweep voltammetry (LSV), and X-ray diffraction (XRD) techniques. EIS study shows that the GPE containing 30 wt% TBAI has the lowest bulk impedance, Rb (23 Ω), and highest room temperature ionic conductivity (3.46 × 10−3 S cm−1). Conductivity-temperature relationship in the temperature range studied obeys Arrhenius rule. The Ea value is decreased with TBAI percentage and is the lowest (12.59 kJ/mol) for GPE containing 30 wt% TBAI. From LSV experimental data, the limiting current density (Jlim), apparent diffusion coefficient of triiodide ion (\( {D}_{I_3^{-}}^{\ast } \)), and exchange current density (J0) have been calculated. The highest value for each of these parameters is 5.00 mA cm−2, 6.59 × 10−7 cm2 s−1, and 0.63 mA cm−2, respectively, for the highest conducting GPE. All samples are amorphous. LSV at stainless steel showed that the electrochemical stability window is 2.2 V. The cyclic voltammetry (CV) was performed from 1 to 1000 cycle which showed good electrochemical stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jun HK, Buraidah MH, Noor MM, Kufian MZ, Majid SR, Sahraoui B, Arof AK (2013) Application of LiBOB-based liquid electrolyte in co-sensitized solar cell. Opt Mater (Amst) 36:151–158

    CAS  Google Scholar 

  2. Vittadello M, Waxman DI, Sideris PJ, Gan Z, Vezzù K, Negro E, Safari A, Greenbaum SG, Di Noto V. (2011) Iodide-conducting polymer electrolytes based on poly-ethylene glycol and MgI2: Synthesis and structural characterization. Electrochimica acta 57:112–122

  3. Hsu HL, Tien CF, Yang YT, Leu J (2013) Dye-sensitized solar cells based on agarose gel electrolytes using allylimidazolium iodides and environmentally benign solvents. Electrochim Acta 91:208–213

    CAS  Google Scholar 

  4. Tiautit N, Puratane C, Panpinit S, Saengsuwan S (2014) Effect of SiO2 and TiO2 nanoparticles on the performance of dye-sensitized solar cells using PVDF-HFP/PVA gel electrolytes. Energy Procedia 56:378–385

  5. Shaafi NF, Muzakir SK, Sahraoui B (2019) A study of the electron regeneration efficiency of solar cells fabricated using CMC/PVA-, alginate-, and xanthan-based electrolytes. Makara J Technol 23:53–58

    Google Scholar 

  6. Bhattacharya B, Tomar SK, Pandey SP, Rhee HW, Singh PK (2012) Porous nanocrystalline TiO2 electrode and poly (N–methyl 4–vinylpyridine iodide): ionic liquid solid polymer electrolyte for device application. Int J Nanotechnol 9:1030–1039

    CAS  Google Scholar 

  7. Nogueira AF, Longo C, De Paoli MA (2004) Polymers in dye sensitized solar cells: overview and perspectives. Coord Chem Rev 248:1455–1468

    CAS  Google Scholar 

  8. Ren Y, Zhang Z, Fang S, Yang M, Cai S (2002) Application of PEO based gel network polymer electrolytes in dye-sensitized photoelectrochemical cells. Sol Energy Mater Sol Cells 71:253–259

    CAS  Google Scholar 

  9. Nogueira VC, Longo C, Nogueira AF, Soto-Oviedo MA, De Paoli M-A (2006) Solid-state dye-sensitized solar cell: improved performance and stability using a plasticized polymer electrolyte. J Photochem Photobiol A Chem 181:226–232

    CAS  Google Scholar 

  10. Nogueira AF, De Paoli M-A (2000) A dye sensitized TiO2 photovoltaic cell constructed with an elastomeric electrolyte. Sol Energy Mater Sol Cells 61:135–141

    CAS  Google Scholar 

  11. Nogueira AF, Durrant JR, De Paoli MA (2001) Dye-sensitized nanocrystalline solar cells employing a polymer electrolyte. Adv Mater 13:826–830

    CAS  Google Scholar 

  12. Benedetti JE, de Paoli MA. & Nogueira AF (2008) Enhancement of photocurrent generation and open circuit voltage in dye-sensitized solar cells using Li+ trapping species in the gel electrolyte. Chem Commun. 9:1121–1123

  13. de Freitas JN, de Souza Gonçalves A, De Paoli M-A, Durrant JR, Nogueira AF (2008) The role of gel electrolyte composition in the kinetics and performance of dye-sensitized solar cells. Electrochim Acta 53:7166–7172

    Google Scholar 

  14. Priya ARS, Subramania A, Jung Y-S, Kim K-J (2008) High-performance quasi-solid-state dye-sensitized solar cell based on an electrospun PVdF− HFP membrane electrolyte. Langmuir 24:9816–9819

    CAS  PubMed  Google Scholar 

  15. Chowdhury FI, Buraidah MH, Arof AK, Mellander B-E, Noor IM (2020) Impact of tetrabutylammonium, iodide and triiodide ions conductivity in polyacrylonitrile based electrolyte on DSSC performance. Sol Energy 196:379–388

    CAS  Google Scholar 

  16. Buraidah MH, Shah S, Teo LP, Chowdhury FI, Careem MA, Albinsson I, Mellander BE, Arof AK (2017) High efficient dye sensitized solar cells using phthaloylchitosan based gel polymer electrolytes. Electrochim Acta 245:846–853

    CAS  Google Scholar 

  17. Hassan HC, Abidin ZHZ, Chowdhury FI, Arof AK (2016) A high efficiency chlorophyll sensitized solar cell with quasi solid PVA based electrolyte. Int J Photoenergy 2016:1–9

    Google Scholar 

  18. Singh VK, Bhattacharya B, Shukla S, Singh PK (2015) New solid-polymer-electrolyte material for dye-sensitized solar cells. Mater Teh 49:123–127

    Google Scholar 

  19. Tan S, Zhai J, Xue B, Wan M, Meng Q, Li Y, Jiang L, Zhu D (2004) Property influence of polyanilines on photovoltaic behaviors of dye-sensitized solar cells. Langmuir 20:2934–2937

    CAS  PubMed  Google Scholar 

  20. Longo C, De Paoli M-A (2003) Dye-sensitized solar cells: a successful combination of materials. J Braz Chem Soc 14:898–901

    Google Scholar 

  21. Nakade S, Kanzaki T, Wada Y, Yanagida S (2005) Stepped light-induced transient measurements of photocurrent and voltage in dye-sensitized solar cells: application for highly viscous electrolyte systems. Langmuir 21:10803–10807

    CAS  PubMed  Google Scholar 

  22. de Freitas JN, Nogueira AF, De Paoli M-A (2009) New insights into dye-sensitized solar cells with polymer electrolytes. J Mater Chem 19:5279–5294

    Google Scholar 

  23. Yun S, Freitas JN, Nogueira AF, Wang Y, Ahmad S, Wang ZS (2016) Dye-sensitized solar cells employing polymers. Prog Polym Sci 59:1–40

    CAS  Google Scholar 

  24. Li Q, Chen X, Tang Q, Cai H, Qin Y, He B, Li M, Jin S, Liu Z (2014) Enhanced photovoltaic performances of quasi-solid-state dye-sensitized solar cells using a novel conducting gel electrolyte. J Power Sources 248:923–930

    CAS  Google Scholar 

  25. Lan Z, Wu J, Lin J, Huang M (2010) Quasi-solid-state dye-sensitized solar cell based on a polymer gel electrolyte with in situ synthesized ionic conductors. Comptes Rendus Chim 13:1401–1405

    CAS  Google Scholar 

  26. Aziz MF, Noor IM, Sahraoui B, Arof AK (2014) Dye-sensitized solar cells with PVA–KI–EC–PC gel electrolytes. Opt Quant Electron 46:133–141

    CAS  Google Scholar 

  27. Khanmirzaei MH, Ramesh S, Ramesh K (2015) Hydroxypropyl cellulose based non-volatile gel polymer electrolytes for dye-sensitized solar cell applications using 1-methyl-3-propylimidazolium iodide ionic liquid. Sci Rep 5:18056

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Hu P, Chai J, Duan Y, Liu Z, Cui G, Chen L (2016) Progress in nitrile-based polymer electrolytes for high performance lithium batteries. J Mater Chem A 4:10070–10083

    CAS  Google Scholar 

  29. Arof AK, Jun HK, Sim LN, Kufian MZ, Sahraoui B (2013) Gel polymer electrolyte based on LiBOB and PAN for the application in dye-sensitized solar cells. Opt Mater (Amst) 36:135–139

    CAS  Google Scholar 

  30. Pelet S, Moser J-E, Grätzel M (2000) Cooperative effect of adsorbed cations and iodide on the interception of back electron transfer in the dye sensitization of nanocrystalline TiO2. J Phys Chem B 104:1791–1795

    CAS  Google Scholar 

  31. Olson CL (2006) Influence of cation on charge recombination in dye-sensitized TiO2 electrodes. J Phys Chem B 110:9619–9626

    CAS  PubMed  Google Scholar 

  32. Bandara TM, Svensson T, Dissanayake MA, Furlani M, Jayasundara WJ, Fernando PS, Albinsson I, Mellander BE (2013) Conductivity behaviour in novel quasi-solid-state electrolyte based on polyacrylonitrile and tetrahexylammonium iodide intended for dye sensitized solar cells. J Natl Sci Found Sri Lanka 41(3):175–184

  33. Ileperuma OA, Dissanayake M, Somasunderam S, Bandara L (2004) Photoelectrochemical solar cells with polyacrylonitrile-based and polyethylene oxide-based polymer electrolytes. Sol Energy Mater Sol Cells 84:117–124

    CAS  Google Scholar 

  34. Ileperuma OA, Dissanayake M, Somasundaram S (2002) Dye-sensitised photoelectrochemical solar cells with polyacrylonitrile based solid polymer electrolytes. Electrochim Acta 47:2801–2807

    CAS  Google Scholar 

  35. Dissanayake MA, Bandara LR, Bokalawala RS, Jayathilaka PA, Ileperuma OA, Somasundaram S (2002) A novel gel polymer electrolyte based on polyacrylonitrile (PAN) and its application in a solar cell. Mater Res Bull 37:867–874

  36. Bandara TMWJ, Ekanayake P, Dissanayake MAKL, Albinsson I, Mellander B-E (2010) A polymer electrolyte containing ionic liquid for possible applications in photoelectrochemical solar cells. J Solid State Electrochem 14:1221–1226

    CAS  Google Scholar 

  37. Yun S, Lund PD, Hinsch A (2015) Stability assessment of alternative platinum free counter electrodes for dye-sensitized solar cells. Energy Environ Sci 8:3495–3514

    CAS  Google Scholar 

  38. Kontos AG, Stergiopoulos T, Likodimos V, Milliken D, Desilvesto H, Tulloch G, Falaras P (2013) Long-term thermal stability of liquid dye solar cells. J Phys Chem C 117:8636–8646

    CAS  Google Scholar 

  39. Yun S, Pu H, Chen J, Hagfeldt A, Ma T (2014) Enhanced performance of supported HfO2 counter electrodes for redox couples used in dye-sensitized solar cells. ChemSusChem 7:442–450

    CAS  PubMed  Google Scholar 

  40. Yun S, Zhang H, Pu H, Chen J, Hagfeldt A, Ma T (2013) Metal oxide/carbide/carbon nanocomposites: in situ synthesis, characterization, calculation, and their application as an efficient counter electrode catalyst for dye-sensitized solar cells. Adv Energy Mater 3:1407–1412

    CAS  Google Scholar 

  41. Wen T-C, Kuo H-H, Gopalan A (2002) The influence of lithium ions on molecular interaction and conductivity of composite electrolyte consisting of TPU and PAN. Solid State Ionics 147:171–180

    CAS  Google Scholar 

  42. Kontos AG, Fardis M, Prodromidis MI, Stergiopoulos T, Chatzivasiloglou E, Papavassiliou G, Falaras P (2006) Morphology, ionic diffusion and applicability of novel polymer gel electrolytes with LiI/I2. Phys Chem Chem Phys 8:767–776

    CAS  PubMed  Google Scholar 

  43. Wu M, Lin X, Wang Y, Wang L, Guo W, Qi D, Peng X, Hagfeldt A, Grätzel M, Ma T (2012) Economical Pt-free catalysts for counter electrodes of dye-sensitized solar cells. J Am Chem Soc 134:3419–3428

    CAS  PubMed  Google Scholar 

  44. Kim C, Lee G, Liou K, Ryu KS, Kang SG, Chang SH (1999) Polymer electrolytes prepared by polymerizing mixtures of polymerizable PEO-oligomers, copolymer of PVDC and poly(acrylonitrile), and lithium triflate. Solid State Ionics 123:251–257

  45. Mahendran O, Rajendran S (2003) Ionic conductivity studies in PMMA/PVdF polymer blend electrolyte with lithium salts. Ionics (Kiel) 9:282–288

  46. Ramesh S, Ang GP (2010) Impedance and FTIR studies on plasticized PMMA–LiN (CF3SO2)2 nanocomposite polymer electrolytes. Ionics (Kiel) 16:465–473

  47. Ali AMM, Yahya MZA, Bahron H, Subban RHY (2006) Electrochemical studies on polymer electrolytes based on poly (methyl methacrylate)-grafted natural rubber for lithium polymer battery. Ionics (Kiel) 12:303–307

  48. Su’ait MS, Ahmad A, Rahman MYA (2009) Ionic conductivity studies of 49% poly (methyl methacrylate)-grafted natural rubber-based solid polymer electrolytes. Ionics (Kiel) 15:497–500

  49. Papageorgiou N (1996) The performance and stability of ambient temperature molten salts for solar cell applications. J Electrochem Soc 143:3099

    CAS  Google Scholar 

  50. Aikens DA (1983) Electrochemical methods, fundamentals and applications. J Chem Educ 60:A25

    Google Scholar 

  51. Tai Q, Zhao X-Z (2014) Pt-free transparent counter electrodes for cost-effective bifacial dye-sensitized solar cells. J Mater Chem A 2:13207–13218

    CAS  Google Scholar 

  52. Yun S, Hagfeldt A, Ma T (2014) Pt-free counter electrode for dye-sensitized solar cells with high efficiency. Adv Mater 26:6210–6237

    CAS  PubMed  Google Scholar 

  53. Listorti A, O’Regan B, Durrant JR (2011) Electron transfer dynamics in dye-sensitized solar cells. Chem Mater 23:3381–3399

    CAS  Google Scholar 

  54. Park CH, Kim DW, Prakash J, Sun Y-K (2003) Electrochemical stability and conductivity enhancement of composite polymer electrolytes. Solid State Ionics 159:111–119

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faisal I. Chowdhury.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chowdhury, F.I., Khalil, I., Khandaker, M.U. et al. Electrochemical and structural characterization of polyacrylonitrile (PAN)–based gel polymer electrolytes blended with tetrabutylammonium iodide for possible application in dye-sensitized solar cells. Ionics 26, 4737–4746 (2020). https://doi.org/10.1007/s11581-020-03612-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03612-7

Keywords

Navigation