Skip to main content
Log in

Review of numerical methods for simulation of mechanical heart valves and the potential for blood clotting

  • Review Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Even though the mechanical heart valve (MHV) has been used routinely in clinical practice for over 60 years, the occurrence of serious complications such as blood clotting remains to be elucidated. This paper reviews the progress that has been made over the years in terms of numerical simulation method and the contribution of abnormal flow toward blood clotting from MHVs in the aortic position. It is believed that this review would likely be of interest to some readers in various disciplines, such as engineers, scientists, mathematicians and surgeons, to understand the phenomenon of blood clotting in MHVs through computational fluid dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

ALE:

Arbitrary Lagrangian–Eulerian

BDI:

Blood damage indexes

BF:

Boundary fitted

BHV:

Bio-prosthetic heart valve

BMHV:

Bileaflet mechanical heart valve

CFD:

Computational fluid dynamics

CURVIB:

Curvilinear immersed boundary method

DES:

Detached eddy simulation

DNS:

Direct numerical simulation

FD:

Fictitious domain

FV:

Finite volume

IB:

Immersed boundary

IMM:

Immersed membrane method

LBM:

Lattice Boltzmann method

LES:

Large eddy simulation

LV:

Left ventricle

MHV:

Mechanical heart valve

NBF:

Non-boundary fitted

RANS:

Reynolds average Navier–Stokes

SA:

Spalart–Almaras

SPH:

Smooth particle hydrodynamics

SST:

Shear stress transport

TSS:

Turbulent shear stress

URANS:

Unsteady Reynolds average Navier–Stokes

WSS:

Wall shear stress

References

  1. Akutsu T, Matsumoto A, Takahashi K (2011) In vitro study of the correlation between the aortic flow field affected by the bileaflet mechanical valves and coronary circulation. In: 5th European conference of the international federation for medical and biological engineering. Springer, pp 769–772

  2. Alauzet F, Fabrèges B, Fernández MA, Landajuela M (2016) Nitsche-XFEM for the coupling of an incompressible fluid with immersed thin-walled structures. Comput Methods Appl Mech Eng 301:300–335

    Article  Google Scholar 

  3. Alemu Y, Bluestein D (2007) Flow-induced platelet activation and damage accumulation in a mechanical heart valve: numerical studies. Artif. Organs 31(9):677–688

    Article  PubMed  Google Scholar 

  4. Aliabadi A (2013) Numerical simulation of fluid-structure interaction for tilting-disk mechanical heart valves. Ph.D. thesis

  5. Annerel S, Claessens T, Degroote J, Segers P, Vierendeels J (2014a) Validation of a numerical FSI simulation of an aortic BMHV by in vitro PIV experiments. Med Eng Phys 36(8):1014–23

    Article  CAS  PubMed  Google Scholar 

  6. Annerel S, Claessens T, Taelman L, Degroote J, Van Nooten G, Verdonck P, Segers P, Vierendeels J (2014b) Influence of valve size, orientation and downstream geometry of an aortic BMHV on leaflet motion and clinically used valve performance parameters. Ann Biomed Eng 43(6):1370–1384

    Article  PubMed  Google Scholar 

  7. Annerel S, Degroote J, Claessens T, Dahl SK, Skallerud B, Hellevik LR, Van Ransbeeck P, Segers P, Verdonck P, Vierendeels J (2012) A fast strong coupling algorithm for the partitioned fluid-structure interaction simulation of BMHVs. Comput Methods Biomech Biomed Eng 15(12):1281–1312

    Article  Google Scholar 

  8. Anupindi K, Delorme Y, Shetty DA, Frankel SH (2013) A novel multiblock immersed boundary method for large eddy simulation of complex arterial hemodynamics. J Comput Phys 254:200–218

    Article  Google Scholar 

  9. Appanaboyina SFM, Lohne R, Putman CM, R CJ (2008) Computational fluid dynamics of stented intracranial aneurysms using adaptive embedded unstructured grids. Int J Num Methods Fluids 57:475–493

    Article  CAS  Google Scholar 

  10. Astorino M, Gerbeau JF, Pantz O, Traoré KF (2009) Fluid-structure interaction and multi-body contact: application to aortic valves. Comput Methods Appl Mech Eng 198(45–46):3603–3612

    Article  Google Scholar 

  11. Azwadi N, Shukri ZM, Afiq Witri MY (2012) Numerical investigation of 2D lid driven cavity using smoothed particle hydrodynamics (SPH) method. Am Inst Phys Conf Ser 1440:789–798

    Google Scholar 

  12. Balaras E (2004) Modeling complex boundaries using an external force field on fixed Cartesian grids in large-eddy simulations. Comput Fluids 33(3):375–404

    Article  Google Scholar 

  13. Bang JS, Yoo SM, Kim CN (2006) Characteristics of pulsatile blood flow through the curved bileaflet mechanical heart valve installed in two different types of blood vessels: velocity and pressure of blood flow. ASAIO J 52(3):234–242

    Article  PubMed  Google Scholar 

  14. Bark DL, Vahabi H, Bui H, Movafaghi S, Moore B, Kota AK, Popat K, Dasi LP (2017) Hemodynamic performance and thrombogenic properties of a superhydrophobic bileaflet mechanical heart valve. Ann Biomed Eng 45(2):452–463

    Article  PubMed  Google Scholar 

  15. Barker AJ, Markl M, Bürk J, Lorenz R, Bock J, Bauer S, Schulz-menger J, Knobelsdorff-brenkenhoff FV (2012) Bicuspid aortic valve is associated with altered wall shear stress in the ascending aorta. Circ Cardiovasc Imaging 5(4):457–466

    Article  PubMed  Google Scholar 

  16. Bavo AM, Rocatello G, Iannaccone F, Degroote J, Vierendeels J, Segers P (2016) Fluid-structure interaction simulation of prosthetic aortic valves: comparison between immersed boundary and arbitrary Lagrangian–Eulerian techniques for the mesh representation. Plos One 11(4):1–17

    Article  CAS  Google Scholar 

  17. Biasetti J, Hussain F, Gasser TC (2011) Blood flow and coherent vortices in the normal and aneurysmatic aortas: a fluid dynamical approach to intra- luminal thrombus formation. J R Soc Interface 8:1449–1461

    Article  PubMed  PubMed Central  Google Scholar 

  18. Black MM, Drury PJ (1994) Mechanical and other problems of artificial valves. In: Berry C (ed) The pathology of devices. Springer, Berlin, pp 127–159

  19. Bluestein D, Gutierrez C, Londono M, Schoephoerster RT (1999) Vortex shedding in steady flow through a model of an arterial stenosis and its relevance to mural platelet deposition. Ann Biomed Eng 27(6):763–773

    Article  CAS  PubMed  Google Scholar 

  20. Bluestein D, Li YM, Krukenkamp IB (2002) Free emboli formation in the wake of bi-leaflet mechanical heart valves and the effects of implantation techniques. J Biomech 35:1533–1540

    Article  CAS  PubMed  Google Scholar 

  21. Bluestein D, Rambod E, Gharib M (2000) Vortex shedding as a mechanism for free emboli formation in mechanical heart valves. J Biomech Eng 122:125–134

    Article  CAS  PubMed  Google Scholar 

  22. Bonomi D, Vergara C, Faggiano E, Stevanella M, Conti C, Redaelli A, Puppini G, Faggian G, Formaggia L, Luciani GB (2015) Influence of the aortic valve leaflets on the fluid-dynamics in aorta in presence of a normally functioning bicuspid valve. Biomech Model Mechanobiol 14(16):1349–1361

    Article  CAS  PubMed  Google Scholar 

  23. Borazjani I (2013) Fluid-structure interaction, immersed boundary-finite element method simulations of bio-prosthetic heart valves. Comput Methods Appl Mech Eng 257:103–116

    Article  Google Scholar 

  24. Borazjani I (2015) A review of fluid-structure interaction simulations of prosthetic heart valves. J Long Term Eff Med Implants 25:75–93

    Article  PubMed  Google Scholar 

  25. Borazjani I, Ge L, Le T, Sotiropoulos F (2013) A parallel overset-curvilinear-immersed boundary framework for simulating complex 3D incompressible flows. Comput Fluids 77:76–96

    Article  PubMed  PubMed Central  Google Scholar 

  26. Borazjani I, Ge L, Sotiropoulos F (2008) Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3D rigid bodies. J Comput Phys 227(16):7587–7620

    Article  PubMed  PubMed Central  Google Scholar 

  27. Borazjani I, Ge L, Sotiropoulos F (2010) High-resolution fluid structure interaction simulations of flow through a bi-leaflet mechanical heart valve in an anatomic aorta. Ann Biomed Eng 38(2):326–344

    Article  PubMed  Google Scholar 

  28. Borazjani I, Sotiropoulos F (2010) The effect of implantation orientation of a bileaflet mechanical heart valve on kinematics and hemodynamics in an anatomic aorta. J Biomech Eng 132(11):111005

    Article  PubMed  PubMed Central  Google Scholar 

  29. Caltagirone J-P, Vincent S (2001) Sur une methode de penalisation tensorielle pour la resolution des equations de Navier–Stokes. C R Acad Sci Ser IIB Mech 329(8):607–613

    CAS  Google Scholar 

  30. Cannegieter SC, Rosendaal FR, Briet E (1994) Thromboembolic and bleeding complications in patients with mechanical heart valve prostheses. Circulation 89(2):635–641

    Article  CAS  PubMed  Google Scholar 

  31. Carey RF, Porter JM, Richard G, Luck C, Shu MC, Guo GX, Elizondo DR, Kingsbury C, Anderson S, Herman BA (1995) An interlaboratory comparison of the FDA protocol for the evaluation of cavitation potential of mechanical heart valves. J Heart Valve Dis 4(5):532–539

    CAS  PubMed  Google Scholar 

  32. Chandra S, Rajamannan NM, Sucosky P (2012) Computational assessment of bicuspid aortic valve wall-shear stress: implications for calcific aortic valve disease. Biomech Model Mechanobiol 11:1085–1096

    Article  PubMed  Google Scholar 

  33. Chandran KB (1992) Cardiovascular biomechanics. New York University Press, University of California

    Google Scholar 

  34. Chandran KB (2010) Role of computational simulations in heart valve dynamics and design of valvular prostheses. Cardiovas Eng Technol 1(1):18–38

    Article  Google Scholar 

  35. Chandran KB, Aluri S (1997) Mechanical valve closing dynamics: relationship between velocity of closing, pressure transients, and cavitation initiation. Ann Biomed Eng 25(6):926–938

    Article  CAS  PubMed  Google Scholar 

  36. Chandran KB, Dexter EU, Aluri S, Richenbacher WE (1998) Negative pressure transients with mechanical heart-valve closure: correlation between in vitro and in vivo results. Ann Biomed Eng 26(4):546–556

    Article  CAS  PubMed  Google Scholar 

  37. Cheng R, Lai Y, Chandran K (2004) Three-dimensional fluid-structural interaction simulation of bileaflet mechanical heart valve flow dynamics. Ann Biomed Eng 32(11):1471–1483

    Article  PubMed  PubMed Central  Google Scholar 

  38. Cheng R, Lai YG, Chandran KB (2003) Two-dimensional fluid-structure interaction simulation of bileaflet mechanical heart valve flow dynamics. J Heart Valve Dis 12(6):772–780

    PubMed  Google Scholar 

  39. Chizari H, Ismail F (2017) Accuracy variations in residual distribution and finite volume methods on triangular grids. Bull Malays Math Sci Soc 40(3):1231–1264

    Article  Google Scholar 

  40. Chizari H, Ismail F (2017) A Grid-insensitive LDA method on triangular grids solving the system of Euler equations. J Sci Comput 71(2):839–874

    Article  Google Scholar 

  41. Choi CR, Kim CN (2009) Numerical analysis on the hemodynamics and leaflet dynamics in a bileaflet mechanical heart valve using a fluid-structure interaction method. ASAIO J 55(5):428–37

    Article  PubMed  Google Scholar 

  42. Choi CR, Kim CN, Kwon YJ, Lee JW (2003) Pulsatile blood flows through a bileaflet mechanical heart valve with different approach methods of numerical analysis; pulsatile flows with fixed leaflets and interacted with moving leaflets. KSME Int J 17(7):1073–1082

    Article  Google Scholar 

  43. Collins F, Collins F (2014) Effect of hypertension on the closing dynamics and lagrangian blood damage index measure of the B-Datum Regurgitant Jet in a bileaflet mechanical heart valve. Ann Biomed Eng 42(1):110–122

    Article  Google Scholar 

  44. Corbett SC, Ajdari A, Coskun AU, Nayeb-Hashemi H (2010) Effect of pulsatile blood flow on thrombosis potential with a step wall transition. ASAIO J 56(4):290–295

    PubMed  Google Scholar 

  45. Dangas GD, Weitz JI, Giustino G, Makkar R, Mehran R (2016) Prosthetic heart valve thrombosis. J Am Coll Cardiol 68(24):2670–2689

    Article  PubMed  Google Scholar 

  46. Dasi LP, Ge L, Simon AH, Sotiropoulos F, Yoganathan PA (2007) Vorticity dynamics of a bileaflet mechanical heart valve in an axisymmetric aorta. Phys Fluids 19(6):067105

    Article  CAS  Google Scholar 

  47. De Hart J, Baaijens FPT, Peters GWM, Schreurs PJG (2003a) A computational fluid-structure interaction analysis of a fiber-reinforced stentless aortic valve. J Biomech 36:699–712

    Article  PubMed  Google Scholar 

  48. De Hart J, Peters GW, Schreurs PJ, Baaijens FP (2000) A two-dimensional fluid-structure interaction model of the aortic valve [correction of value]. J Biomech 33:1079–1088

    Article  PubMed  Google Scholar 

  49. De Hart J, Peters GWM, Schreurs PJG, Baaijens FPT (2003b) A three-dimensional computational analysis of fluid-structure interaction in the aortic valve. J Biomech 36:103–112

    Article  PubMed  Google Scholar 

  50. De Hart J, Peters GWM, Schreurs PJG, Baaijens FPT (2004) Collagen fibers reduce stresses and stabilize motion of aortic valve leaflets during systole. J Biomech 37(3):303–311

    Article  PubMed  Google Scholar 

  51. De Tullio MD, Afferrante L, Demelio G, Pascazio G, Verzicco R (2011) Fluid-structure interaction of deformable aortic prostheses with a bileaflet mechanical valve. J Biomech 44(9):1684–1690

    Article  PubMed  Google Scholar 

  52. De Tullio MD, Cristallo A, Balaras E, Verzicco R, David VR, Vergata T (2009) Direct numerical simulation of the pulsatile flow through an aortic bileaflet mechanical heart valve. J Fluid Mech 622:259

    Article  Google Scholar 

  53. de Tullio MD, Pascazio G, Weltert L, De Paulis R, Verzicco R (2011) Evaluation of prosthetic-valved devices by means of numerical simulations. Philos Trans Ser A Math Phys Eng Sci 369(1945):2502–2509

    Article  Google Scholar 

  54. De Tullio MD, Pedrizzetti G, Verzicco R (2011) On the effect of aortic root geometry on the coronary entry-flow after a bileaflet mechanical heart valve implant: a numerical study. Acta Mech 216(1–4):147–163

    Article  Google Scholar 

  55. Donea J, Giuliani S, Halleux J (1982) An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions. Comput Methods Appl Mech Eng 33:689–723

    Article  Google Scholar 

  56. Dumont K, Stijnen JMa, Vierendeels J, van de Vosse FN, Verdonck PR (2004) Validation of a fluid-structure interaction model of a heart valve using the dynamic mesh method in fluent. Comput Methods Biomech Biomed Eng 7(3):139–146

    Article  CAS  Google Scholar 

  57. Dumont K, Vierendeels J, Kaminsky R, van Nooten G, Verdonck P, Bluestein D (2007) Comparison of the hemodynamic and thrombogenic performance of two bileaflet mechanical heart valves using a CFD/FSI model. J Biomech Eng 129(4):558–565

    Article  PubMed  Google Scholar 

  58. Einav S, Bluestein D (2004) Dynamics of blood flow and platelet transport in pathological vessels. Ann N Y Acad Sci 1015(1):351–366

    Article  PubMed  Google Scholar 

  59. Fadlun E, Verzicco R, Orlandi P, Mohd-Yusof J (2000) Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. J Comput Phys 161(1):35–60

    Article  Google Scholar 

  60. Faggiano E, Antiga L, Puppini G, Quarteroni A, Luciani GB, Vergara C (2013) Helical flows and asymmetry of blood jet in dilated ascending aorta with normally functioning bicuspid valve. Biomech Model Mechanobiol 12(4):801–813

    Article  PubMed  Google Scholar 

  61. Fallon AM, Dasi LP, Marzec UM, Hanson SR, Yoganathan AP (2008) Procoagulant properties of flow fields in stenotic and expansive orifices. Ann Biomed Eng 36(1):1–13

    Article  PubMed  Google Scholar 

  62. Ferziger JH, Peric M (2002) Computational methods for fluid dynamics, 3rd edn. Springer, Berlin

    Book  Google Scholar 

  63. Figliola RS, Mueller TJ (1981) On the hemolytic and thrombogenic potential of occluder prosthetic heart valves from in-vitro measurements. J Biomech Eng 103(2):83–90

    Article  CAS  PubMed  Google Scholar 

  64. Forsythe N, Mueller J-D (2007) Validation of a fluid-structure interaction model for a bileaflet mechanical heart valve. Int J Comput Fluid Dyn 22(8):541–553

    Article  Google Scholar 

  65. Freudenberger RS, Hellkamp AS, Halperin JL, Poole J, Anderson J, Johnson G, Mark DB, Lee KL, Bardy GH (2007) Risk of thromboembolism in heart failure: an analysis from the sudden cardiac death in heart failure trial ( SCD-HeFT ). Circulation 115(20):2637–2641

    Article  PubMed  Google Scholar 

  66. Ge L, Dasi LP, Sotiropoulos F, Yoganathan AP (2008) Characterization of hemodynamic forces induced by mechanical heart valves: Reynolds vs. viscous stresses. Ann Biomed Eng 36(2):276–297

    Article  PubMed  Google Scholar 

  67. Ge L, Jones SC, Sotiropoulos F, Healy TM, Yoganathan AP (2003) Numerical simulation of flow in mechanical heart valves: grid resolution and the assumption of flow symmetry. J Biomech Eng 125(5):709–718

    Article  PubMed  Google Scholar 

  68. Ge L, Sotiropoulos F (2007) A numerical method for solving the 3D unsteady incompressible Navier–Stokes equations in curvilinear domains with complex immersed boundaries. J Comput Phys 225(2):1782–1809

    Article  PubMed  PubMed Central  Google Scholar 

  69. Gilmanov A, Le TB, Sotiropoulos F (2015) A numerical approach for simulating fluid structure interaction of flexible thin shells undergoing arbitrarily large deformations in complex domains. J Comput Phys 300:814–843

    Article  CAS  Google Scholar 

  70. Gilmanov A, Sotiropoulos F (2005) A hybrid Cartesian/immersed boundary method for simulating flows with 3D, geometrically complex, moving bodies. J Comput Phys 207(2):457–492

    Article  Google Scholar 

  71. Gilmanov A, Sotiropoulos F, Balaras E (2003) A general reconstruction algorithm for simulating flows with complex 3D immersed boundaries on Cartersian grids. J Comput Phys 191(2):660–669

    Article  Google Scholar 

  72. Glowinski R, Pan TW, Hesla TI, Joseph DD (1999) A distributed Lagrange multiplier/fictitious domain method for particulate flows. Int J Multiph Flow 25(5):755–794

    Article  CAS  Google Scholar 

  73. Griffith BE (2011) Immersed boundary model of aortic heart valve dynamics with physiological driving and loading conditions. Int J Numer Methods Biomed Eng 28(1):1–29

    Google Scholar 

  74. Griffith BE, Hornung RD, McQueen DM, Peskin CS (2007) An adaptive, formally second order accurate version of the immersed boundary method. J Comput Phys 223(1):10–49

    Article  Google Scholar 

  75. Griffith BE, Luo X, McQUEEN DM, Peskin CS (2009) Simulating the fluid dynamics of natural and prosthetic heart valves using the immersed boundary method. Int J Appl Mech 01(01):137–177

    Article  Google Scholar 

  76. Grigioni M, Daniele C, Avenio GD, Barbaro V (2001) The influence of the leaflets ’ curvature on the flow field in two bileaflet prosthetic heart valves. J Biomech 34(5):613–621

    Article  CAS  PubMed  Google Scholar 

  77. Grigioni M, Daniele C, Del Gaudio C, Morbiducci U, Balducci A, Davenio G, Barbaro V (2005a) Three-dimensional numeric simulation of flow through an aortic bileaflet valve in a realistic model of aortic root. ASAIO J 51(3):176–183

    Article  PubMed  Google Scholar 

  78. Grigioni M, Morbiducci U, Avenio GD, Di G, Costantino B, Gaudio D (2005b) A novel formulation for blood trauma prediction by a modified power-law mathematical model. Biomech Model Mechanobiol 4(4):249–260

    Article  PubMed  Google Scholar 

  79. Gross JM, Guo GX, Hwang NH (1990) Venturi pressure cannot cause cavitation in mechanical heart valve prostheses. ASAIO Trans Am Soc Artif Int Organs 37(3):M357–8

    Google Scholar 

  80. Gross JM, Shermer CD, Hwang NHC (1988) Vortex shedding in bileaflet heart valve prostheses. ASAIO J 34(3):845–850

    CAS  Google Scholar 

  81. Guivier C, Deplano V, Pibarot P (2007) New insights into the assessment of the prosthetic valve performance in the presence of subaortic stenosis through a fluid-structure interaction model. J Biomech 40(10):2283–2290

    Article  PubMed  Google Scholar 

  82. Guivier-Curien C, Deplano V, Bertrand E (2009) Validation of a numerical 3-D fluid-structure interaction model for a prosthetic valve based on experimental PIV measurements. Med Eng Phys 31(8):986–993

    Article  PubMed  Google Scholar 

  83. Haeri S, Shrimpton JS (2012) On the application of immersed boundary, fictitious domain and body-conformal mesh methods to many particle multiphase flows. Int J Multiph Flow 40:38–55

    Article  CAS  Google Scholar 

  84. Halevi R, Hamdan A, Marom G, Lavon K, Ben-Zekry S, Raanani E, Bluestein D, Haj-Ali R (2016) Fluid-structure interaction modeling of calcific aortic valve disease using patient-specific three-dimensional calcification scans. Med Biol Eng Comput 54(11):1683–1694

    Article  PubMed  Google Scholar 

  85. Hansbo A, Hansbo P (2002) An unfitted finite element method, based on Nitsche Õ s method, for elliptic interface problems. Comput Methods Appl Mech Eng 191:5537–5552

    Article  Google Scholar 

  86. Hart JD (2002) Fluid-structure interaction in the aortic heart valve a three-dimensional computational analysis. Thesis

  87. Hart JD, Peters GWM, Schreurs PJG, Baaijens FPT (2003) A three-dimensional computational analysis of fluid structure interaction in the aortic valve. J Biomech 36:103–112

    Article  PubMed  Google Scholar 

  88. Hasenkam JM, Ringgaard S, Houlind K, Botnar RM, St dkilde Jorgensen H, Boesiger P, Pedersen EM (1999) Prosthetic heart valve evaluation by magnetic resonance imaging q. Eur J Cardiothorac Surg 16(3):300–305

    Article  CAS  PubMed  Google Scholar 

  89. Hashimoto S, Manabe S, Matsumoto Y, Ikegami K, Tsuji H (2000) The effect of pulsatile shear flow on thrombus formation and hemolysis. In: 22nd annual EMBS international conference, Chicago, pp 2461–2462

  90. Haya LK (2015) Measurements of flow through a bileaflet mechanical heart valve in an anatomically accurate model of the aorta. Ph.D. thesis, University of Ottawa

  91. He Z, Xi B, Zhu K, Hwang NH (2001) Mechanisms of mechanical heart valve cavitation: investigation using a tilting disk valve model. J Heart Valve Dis 10(5):666–674

    CAS  PubMed  Google Scholar 

  92. Hellums JD, Peterson DM, Stathopoulos NA, Moake JL, Giorgio TD (1987) Studies on the mechanisms of shear-induced platelet activation. In: Hartmann A, Kuschinsky W (eds) Cerebral ischemia and hemorheology. Springer, pp 80–89

  93. Hong T, Kim CN (2011) A numerical analysis of the blood flow around the bileaflet mechanical heart valves with different rotational implantation angles. J Hydrodyn Ser B 23(5):607–614

    Article  Google Scholar 

  94. Hose DR, Narracott AJ, Penrose JMT, Baguley D, Jones IP, Lawford PV (2006) Fundamental mechanics of aortic heart valve closure. J Biomech 39(5):958–967

    Article  PubMed  Google Scholar 

  95. Huang ZJ, Merkle CL (1994) Numerical simulation of unsteady laminar flow through a tilting disk heart valve: prediction of vortex shedding. J Biomech 11(4):391–402

    Article  Google Scholar 

  96. Hutchison C, Sullivan P, Ethier CR (2011) Measurements of steady flow through a bileaflet mechanical heart valve using stereoscopic PIV. Med Biol Eng Comput 49:325–335

    Article  PubMed  Google Scholar 

  97. Hwang NH (1998) Cavitation potential of pyrolytic carbon heart valve prostheses: a review and current status. J Heart Valve Dis 7(2):140

    CAS  PubMed  Google Scholar 

  98. Iaccarino G, Verzicco R, Bari P, David VR (2003) Immersed boundary technique for turbulent flow simulations. Appl Mech Rev 56(3):331

    Article  Google Scholar 

  99. Ikeno T, Kajishima T (2007) Finite-difference immersed boundary method consistent with wall conditions for incompressible turbulent flow simulations. J Comput Phys 226:1485–1508

    Article  CAS  Google Scholar 

  100. Ismail F, Carrica PM, Xing T, Stern F (2010) Evaluation of linear and nonlinear convection schemes on multidimensional non-orthogonal grids with applications to KVLCC2 tanker. Int J Numer Methods Fluids 64:850–886

    Google Scholar 

  101. Jahandardoost M, Fradet G, Mohammadi H (2016) Effect of pulsatility rate on the hemodynamics of bileaflet mechanical prosthetic heart valves (St. Jude medical valve) for the aortic position in the opening phase; a computational study. Proc Inst Mech Eng H J Eng Med 230:1–16

    Article  Google Scholar 

  102. Jeong J, Hussain F (1995) On the identification of a vortex. J Fluid Mech 285:69–94

    Article  Google Scholar 

  103. Jesty J, Yin W, Perrotta P, Bluestein D (2003) Platelet activation in a circulating flow loop: combined effects of shear stress and exposure time. Platelets 14(3):143–149

    Article  CAS  PubMed  Google Scholar 

  104. Kafesjian R, Howanec M, Ward G, Diep L, Wagstaff L, Rhee R (1994) Cavitation damage of pyrolytic carbon in mechanical heart valves. J Heart Valve Dis 3:2–7

    Google Scholar 

  105. Khalafvand SS, Ng EYK, Zhong L, Hung TK (2012) Fluid-dynamics modelling of the human left ventricle with dynamic mesh for normal and myocardial infarction: preliminary study. Comput Biol Med 42:863–870

    Article  CAS  PubMed  Google Scholar 

  106. King MJ, Corden J, David T, Fisher J (1996) A three-dimensional, time-dependent analysis of flow through a bileaflet mechanical heart valve: comparison of experimental and numerical results. J Biomech 29(5):609–618

    Article  CAS  PubMed  Google Scholar 

  107. Kleine P, Hasenkam MJ, Nygaard H, Perthel M, Wesemeyer D, Laas J (2000) Tilting disc versus bileaflet aortic valve substitutes: intraoperative and postoperative hemodynamic performance in humans. J Heart Valve Dis 9(2):308–311

    CAS  PubMed  Google Scholar 

  108. Kleine P, Perthel M, Nygaard H, Hansen SB, Paulsen PK, Riis C, Laas J (1998) Medtronic Hall versus St. Jude Medical mechanical aortic valve: downstream turbulences with respect to rotation in pigs. J Heart Valve Dis 7(5):548–555

    CAS  PubMed  Google Scholar 

  109. Kleine P, Scherer M, Abdel-Rahman U, Klesius AA, Ackermann H, Moritz A (2002) Effect of mechanical aortic valve orientation on coronary artery flow: comparison of tilting disc versus bileaflet prostheses in pigs. J Thorac Cardiovasc Surg 124(5):925–932

    Article  PubMed  Google Scholar 

  110. Kodama H, Takeshita K, Araki T (2004) Fluid particle dynamics simulation of charged colloidal suspensions. J Phys Condens Matter 115(16):115–123

    Article  CAS  Google Scholar 

  111. Krafczyk M, Cerrolaza M, Schulz M, Rank E (1998) Analysis of 3D transient blood flow passing through an artificial aortic valve by Lattice Boltzmann methods. J Biomech 31:453–462

    Article  CAS  PubMed  Google Scholar 

  112. Krafczyk M, Tolke J, Rank E, Schulz M (2001) Two-dimensional simulation of fluid structure interaction using lattice-Boltzmann methods. Comput Struct 79:2031–2037

    Article  Google Scholar 

  113. Krishnan S, Udaykumar HS, Marshall JS, Chandran KB (2006) Two-dimensional dynamic simulation of platelet activation during mechanical heart valve closure. Ann Biomed Eng 34(10):1519–1534

    Article  CAS  PubMed  Google Scholar 

  114. Kuan YH, Kabinejadian F, Nguyen V-t, Su B, Yoganathan AP, Leo HL (2014) Computer methods in biomechanics and biomedical engineering comparison of hinge microflow fields of bileaflet mechanical heart valves implanted in different sinus shape and downstream geometry. Ph.D. thesis

  115. Lai YG, Chandran KB, Lemmon J (2002) A numerical simulation of mechanical heart valve closure fluid dynamics. J Biomech 35:881–892

    Article  PubMed  Google Scholar 

  116. Lakshmi PD, Simon HA, Sucosky P, Yoganathan AP, Dasi LP, Simon HA, Sucosky P, Yoganathan AP (2009) Fluid mechanics of artificial heart valves. Clin Exp Pharmacol Physiol 36(2):225–237

    Article  CAS  Google Scholar 

  117. Le TB, Sotiropoulos F (2012) Fluid-structure interaction of an aortic heart valve prosthesis driven by an animated anatomic left ventricle. J Comput Phys 244:41–62

    Article  PubMed Central  Google Scholar 

  118. Lee CS, Chandran KB (1995) Numerical simulation of instantaneous backflow through central clearance of bileaflet mechanical heart valves at closure: shear stress and pressure fields within clearance. Med Biol Eng Comput 33(3):257–263

    Article  CAS  PubMed  Google Scholar 

  119. Leo HL (2005). An in vitro investigation of the flow fields through bileaflet and polymeric prosthetic heart valves. Ph.D. thesis, Georgia Institute of Technology

  120. Leonard A (1985) Computing three-dimensional incompressible flows with vortex elements. Annu Rev Fluid Mech 17(1):523–559

    Article  Google Scholar 

  121. Li C-P, Lu P-C (2012) Numerical comparison of the closing dynamics of a new trileaflet and a bileaflet mechanical aortic heart valve. J Artif Organs 15(4):364–74

    Article  PubMed  Google Scholar 

  122. Li C-P, Lu P-C, Liu J-S, Lo C-W, Hwang NH (2008) Role of vortices in cavitation formation in the flow across a mechanical heart valve. J Heart Valve Dis 17(4):435–445

    PubMed  Google Scholar 

  123. Liang G, Leo HL, Fotis S, Yoganathan A (2005) Flow in a mechanical bileaflet heart valve at laminar and near-peak systole flow rates: CFD simulations and experiments. J Biomech Eng 127(5):782–797

    Article  Google Scholar 

  124. Liu JS, Lu PC, Chu SH (2000) Turbulence characteristics downstream of bileaflet aortic valve prostheses. J Biomech Eng 122(2):118–124

    Article  CAS  PubMed  Google Scholar 

  125. Löhner R, Cebral JR, Camelli FE, Appanaboyina S, Baum JD, Mestreau EL, Soto OA (2008) Adaptive embedded and immersed unstructured grid techniques. Comput Methods Appl Mech Eng 197(25–28):2173–2197

    Article  Google Scholar 

  126. Lu P-C, Liu J-S, Huang R-H, Lo C-W, Lai H-C, Hwang NH (2004) The closing behavior of mechanical aortic heart. ASAIO J 50(4):294–300

    Article  PubMed  Google Scholar 

  127. Luo H, Dai H, Ferreira de Sousa PJ, Yin B (2012) On the numerical oscillation of the direct-forcing immersed-boundary method for moving boundaries. Comput Fluids 56:61–76

    Article  Google Scholar 

  128. Marom G (2014) Numerical methods for fluid-structure interaction models of aortic valves. Arch Comput Methods Eng 22(4):595–620

    Article  Google Scholar 

  129. Marom G, Haj-Ali R, Raanani E, Schäfers H-J, Rosenfeld M (2012) A fluid-structure interaction model of the aortic valve with coaptation and compliant aortic root. Med Biol Eng Comput 50(2):173–182

    Article  PubMed  Google Scholar 

  130. Marom G, Kim HS, Rosenfeld M, Raanani E, Haj-Ali R (2013) Fully coupled fluid-structure interaction model of congenital bicuspid aortic valves: effect of asymmetry on hemodynamics. Med Biol Eng Comput 51:839–848

    Article  PubMed  Google Scholar 

  131. Massing A, Larson MG, Logg A (2013) Efficient implementation of finite element methods on nonmatching and overlapping meshes in three dimensions. SIAM J Sci Comput 35(1):c23–c47

    Article  Google Scholar 

  132. Miljoen H, Herck PV, Paelinck B, Colli A, Ducci A, Burriesci G (2016) Possible subclinical leaflet thrombosis in bioprosthetic aortic valves. N Engl J Med 374(16):1590–1592

    Article  PubMed  Google Scholar 

  133. Mirkhani N, Davoudi MR, Hanafizadeh P, Javidi D, Saffarian N (2016) On-X heart valve prosthesis: numerical simulation of hemodynamic performance in accelerating systole. Cardiovasc Eng Technol 7(3):223–237

    Article  PubMed  Google Scholar 

  134. Mittal R, Hee J, Vedula V, Choi YJ, Liu H, Huang HH, Jain S, Younes L, Abraham T, George RT (2016) Computational modeling of cardiac hemodynamics: current status and future outlook. J Comput Phys 305:1065–1082

    Article  Google Scholar 

  135. Mittal R, Iaccarino G (2005) Immersed boundary methods. Ann Rev Fluid Mech 37(1):239–261

    Article  Google Scholar 

  136. Mohammadi H, Ahmadian MT, Wan WK (2006) Time-dependent analysis of leaflets in mechanical aortic bileaflet heart valves in closing phase using the finite strip method. Med Eng Phys 28:122–133

    Article  CAS  PubMed  Google Scholar 

  137. Mohammadi H, Mequanint K (2011) Prosthetic aortic heart valves: modeling and design. Med Eng Phys 33(2):131–147

    Article  PubMed  Google Scholar 

  138. Mohd-Yusof J (1997) Combined immersed-boundary/B-spline methods for simulations of flow in complex geometries. In: Annual research briefs. NASA Ames Research Center, pp 317–327. https://ctr.stanford.edu/annual-research-briefs-1997

  139. Morbiducci U, Ponzini R, Nobili M, Massai D, Montevecchi FM, Bluestein D, Redaelli A (2009) Blood damage safety of prosthetic heart valves. Shear-induced platelet activation and local flow dynamics: a fluid-structure interaction approach. J Biomech 42:1952–1960

    Article  PubMed  Google Scholar 

  140. Morsi YS, Yang WW, Wong CS, Das S (2007) Transient fluid-structure coupling for simulation of a trileaflet heart valve using weak coupling. J Artif Organs 10(2):96–103

    Article  PubMed  Google Scholar 

  141. Mousel JA (2012) A massively parallel adaptive sharp interface solver with application to mechanical heart valve simulations. Ph.D. thesis, University of Iowa

  142. Murphy DW, Dasi LP, Vukasinovic J, Glezer A, Yoganathan AP (2010) Reduction of procoagulant potential of b-datum leakage jet flow in bileaflet mechanical heart valves via application of vortex generator arrays. J Biomech Eng 132(7):071011

    Article  PubMed  Google Scholar 

  143. Naimah W, Ab W, Balan P, Sun Z, Miin Y (2016) Prediction of thrombus formation using vortical structures presentation in Stanford type B aortic dissection: a preliminary study using CFD approach. Appl Math Model 40(4):3115–3127

    Article  Google Scholar 

  144. Narracott AJ, Zervides C, Diaz V, Rafiroiu D, Lawford PV (2010) Analysis of a mechanical heart valve prosthesis and a native venous valve: two distinct applications of FSI to biomedical applications. Int J Numer Methods Biomed Eng 26(3–4):421–434

    Article  Google Scholar 

  145. Nestola MGC, Faggiano E, Vergara C, Lancellotti RM, Ippolito S, Filippi S, Quarteroni A, Scrofani R (2016) Computational comparison of aortic root stresses in presence of stentless and stented aortic valve bio-prostheses. Comput Methods Biomech Biomed Eng 20(2):5842

    Google Scholar 

  146. Nguyen VT, Kuan YH, Chen PY, Ge L, Sotiropoulos F, Yoganathan AP, Leo HL (2012) Experimentally validated hemodynamics simulations of mechanical heart valves in three dimensions. Cardiovasc Eng Technol 3(1):88–100

    Article  Google Scholar 

  147. Nobari S, Mongrain R, Leask R, Cartier R (2013) The effect of aortic wall and aortic leaflet stiffening on coronary hemodynamic: a fluid-structure interaction study. Med Biol Eng Comput 51(8):923–936

    Article  CAS  PubMed  Google Scholar 

  148. Nobili M, Morbiducci U, Ponzini R, Del Gaudio C, Balducci A, Grigioni M, Maria Montevecchi F, Redaelli A (2008) Numerical simulation of the dynamics of a bileaflet prosthetic heart valve using a fluid-structure interaction approach. J Biomech 41(11):2539–2550

    Article  PubMed  Google Scholar 

  149. Paszkowiak JJ, Dardik A, Haven N (2003) Arterial wall shear stress: observations from the bench to the bedside. Vasc Endovasc Surg 37(1):47–57

    Article  Google Scholar 

  150. Pedrizzetti G, Domenichini F (2006) Flow-driven opening of a valvular leaflet. J Fluid Mech 569:321

    Article  Google Scholar 

  151. Pedrizzetti G, Domenichini F (2007) Asymmetric opening of a simple bileaflet valve. Phys Rev Lett 98(21):1–4

    Article  CAS  Google Scholar 

  152. Pelliccioni O, Cerrolaza M, Herrera M (2007) Lattice Boltzmann dynamic simulation of a mechanical heart valve device. Math Comput Simul 75:1–14

    Article  Google Scholar 

  153. Peskin CS (1972) Flow patterns around heart valves: a numerical method. J Comput Phys 10:252–271

    Article  Google Scholar 

  154. Peskin CS, McQueen DM (1995) A general method for the computer simulation of biological systems interacting with fluids. In: Symposia of the society for experimental biology, vol 49. Syndics of the Cambridge University Press, [1947]–2005, London, pp 265–276

  155. Redaelli A, Bothorel H, Votta E, Soncini M, Morbiducci U, Del Gaudio C, Balducci A, Grigioni M (2004) 3-D simulation of the St. Jude medical bileaflet valve opening process: fluid-structure interaction study and experimental validation. J Heart Valve Dis 13(5):804–813

    PubMed  Google Scholar 

  156. Roman F, Napoli E, Milici B, Armenio V (2009) An improved immersed boundary method for curvilinear grids. Comput Fluids 38(8):1510–1527

    Article  Google Scholar 

  157. Romano GP (2008) Deliverable d24-study case report n 2 pulse duplicator with aortic root model from rwth aachen smart-piv ist-2002-37548 European project. http://www.smart-piv.com

  158. Rosenfeld M, Avrahami I, Einav S (2002) Unsteady effects on the flow across tilting disk valves. J Biomech Eng 124(1):21–29

    Article  PubMed  Google Scholar 

  159. Roudaut R, Serri K, Lafitte S (2007) Thrombosis of prosthetic heart valves : diagnosis and therapeutic considerations. Heart 93:137–142

    Article  PubMed  PubMed Central  Google Scholar 

  160. Saxena R, Lemmon J, Ellis J, Yoganathan A, Medical SJ (2003) An in vitro assessment by means of laser Doppler velocimetry of the medtronic advantage bileaflet mechanical heart valve hinge flow. J Thorac Cardiovasc Surg 126(1):90–98

    Article  PubMed  Google Scholar 

  161. Schulz-Heik K, Ramachandran J, Bluestein D, Jesty J (2006) The extent of platelet activation under shear depends on platelet count: differential expression of anionic phospholipid and factor Va. Pathophysiol Haemost Thromb 34(6):255–262

    Article  CAS  Google Scholar 

  162. Scotten LN, Walker DK (2004) New laboratory technique measures projected dynamic area of prosthetic heart valves. J Heart Valve Dis 13(1):120–132

    PubMed  Google Scholar 

  163. Seiler C (2004) Management and follow up of prosthetic heart valves. Heart 98:818–824

    Article  Google Scholar 

  164. Shadden SC, Astorino M, Gerbeau JF (2010) Computational analysis of an aortic valve jet with Lagrangian coherent structures. Chaos 20(1):1–10

    Article  Google Scholar 

  165. Shahriari S (2011) Computational modeling of cardiovascular flows using smoothed particle hydrodynamics. Ph.D. thesis

  166. Shahriari S, Maleki H, Hassan I, Kadem L (2012) Evaluation of shear stress accumulation on blood components in normal and dysfunctional bileaflet mechanical heart valves using smoothed particle hydrodynamics. J Biomech 45(15):2637–2644

    Article  CAS  PubMed  Google Scholar 

  167. Sheriff J, Soared JOS, Xenos M, Jesty J, Bluestein D (2013) Evaluation of shear-induced platelet activation models under constant and dynamic shear stress loading conditions relevant to devices. Ann Biomed Eng 41(6):1279–1296

    Article  PubMed  PubMed Central  Google Scholar 

  168. Shi Y, Joon T, Yeo H, Zhao Y (2006) Particle image velocimetry study of pulsatile flow in bi-leaflet mechanical heart valves with image compensation method. J Biol Phys 32(6):531–551

    Article  PubMed  Google Scholar 

  169. Shi Y, Zhao Y, Yeo TJ, Hwang NH (2003) Numerical simulation of opening process in a bileaflet mechanical heart valve under pulsatile flow condition. J Heart Valve Dis 12(2):245–255

    PubMed  Google Scholar 

  170. Shim B, Chang S (1997) Numerical analysis of three-dimensional Bjork–shiley valvular flow in an aorta. J Biomech Eng 119:45–51

    Article  CAS  PubMed  Google Scholar 

  171. Shoeb M, Fang MC (2013) Assessing bleeding risk in patients taking anticoagulants. J Thromb Thrombolysis 35(3):312–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Shu MC, O’Rourke KK, Coppin CM, Lemmon JD (2004) Flow characterization of the ADVANTAGE and St. Jude medical bileaflet mechanical heart valves. J Heart Valve Dis 13(5):814–822

    PubMed  Google Scholar 

  173. Simon H, Liang G, Fotis S, P YA (2010a) Simulation of the three-dimensional hinge flow fields of a bileaflet mechanical heart valve under aortic conditions. Ann Biomed Eng 38(3):841–853

    Article  PubMed  Google Scholar 

  174. Simon HA (2009) Numerical simulations of the micro flow field in the hinge region. Ph.D. thesis, Georgia Institute of Technology

  175. Simon HA, Ge L, Sotiropoulos F, Yoganathan AP (2010b) Numerical investigation of the performance of three hinge designs of bileaflet mechanical heart valves. Anna Biomed Eng 38(11):3295–3310

    Article  Google Scholar 

  176. Sirois E, Sun W (2011) Computational evaluation of platelet activation induced by a bioprosthetic heart valve. Artif Organs 35(2):157–165

    PubMed  Google Scholar 

  177. Smadi O, Fenech M, Hassan I, Kadem L (2009) Flow through a defective mechanical heart valve: a steady flow analysis. Med Eng Phys 31(3):295–305

    Article  CAS  PubMed  Google Scholar 

  178. Soares JS, Sheriff J, Bluestein D (2013) A novel mathematical model of activation and sensitization of platelets subjected to dynamic stress histories. Biomech ModelMechanobiol 12(6):1127–1141

    Article  Google Scholar 

  179. Sotiropoulos F, Le Bao T, Gilmanov A (2016) Fluid mechanics of heart valves and their replacements. Annu Rev Fluid Mech 48:259–283

    Article  Google Scholar 

  180. Sotiropoulos F, Borazjani I (2009) A review of state-of-the-art numerical methods for simulating flow through mechanical heart valves. Med Biol Eng Comput 47(3):245–256

    Article  PubMed  PubMed Central  Google Scholar 

  181. Sotiropoulos F, Yang X (2014) Immersed boundary methods for simulating fluid-structure interaction. Prog Aerosp Sci 65:1–21

    Article  Google Scholar 

  182. Stefano Z, Formaggia L, Vergara C (2016) An unfitted formulation for the interaction of an incompressible fluid with a thick structure via an XFEM/DG approach. MOX Report n. 35/2016, (35)

  183. Stijnen JMA, de Hart J, Bovendeerd PHM, van de Vosse FN (2004) Evaluation of a fictitious domain method for predicting dynamic response of mechanical heart valves. J Fluids Struct 19(6):835–850

    Article  Google Scholar 

  184. Sturla F, Votta E, Stevanella M, Conti CA, Redaelli A (2013) Impact of modeling fluid-structure interaction in the computational analysis of aortic root biomechanics. Med Eng Phys 35(12):1721–1730

    Article  PubMed  Google Scholar 

  185. Su B, Kabinejadian F, Phang HQ, Kumar GP, Cui F, Kim S, Tan RS, Hon JKF, Allen JC, Leo HL, Zhong L (2015) Numerical modeling of intraventricular flow during diastole after implantation of BMHV. PLoS ONE 10(5):e0126315

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Sun W, Li K, Sirois E (2010) Simulated elliptical bioprosthetic valve deformation: implications for asymmetric transcatheter valve deployment. J Biomech 43(16):3085–3090

    Article  PubMed  Google Scholar 

  187. Tai CH, Liew KM, Zhao Y (2007) Numerical simulation of 3D fluid-structure interaction flow using an immersed object method with overlapping grids. Comput Struct 85(11–14):749–762

    Article  Google Scholar 

  188. Takagi S, Sugiyama K, Ii S, Matsumoto Y (2012) A review of full Eulerian methods for fluid structure interaction problems. J Appl Mech 79(1):010911

    Article  Google Scholar 

  189. Tamagawa M, Kaneda H, Hiramoto M, Nagahama S (2009) Simulation of thrombus formation in shear flows using lattice Boltzmann method. Artif Organs 33(8):604–610

    Article  PubMed  Google Scholar 

  190. Tanaka H, Araki T (2000) Simulation method of colloidal suspensions with hydrodynamic interactions: fluid particle dynamics. Phys Rev Lett 85(6):1338–1341

    Article  CAS  PubMed  Google Scholar 

  191. Tang HS, Jones SC, Sotiropoulos F (2003) An overset-grid method for 3D unsteady incompressible flows. J Comput Phys 191(2):567–600

    Article  Google Scholar 

  192. Teijeira FJ, Mikhail AA (1992) Cardiac valve replacement with mechanical prostheses: current status and trends. Springer, Boston

    Google Scholar 

  193. Tirilomis T (2012) Clinical case report based study acute thrombosis of mechanical bi-leaflet aortic valve prosthesis. J Cardiovasc Dis Res 3(3):228–230

    Article  PubMed  PubMed Central  Google Scholar 

  194. Tse KM, Chiu P, Lee HP, Ho P (2011) Investigation of hemodynamics in the development of dissecting aneurysm within patient-specific dissecting aneurismal aortas using computational fluid dynamics (CFD) simulations. J Biomech 44(5):827–836

    Article  PubMed  Google Scholar 

  195. Tullio MDD, Nam J, Pascazio G, Balaras E, Verzicco R (2012) Computational prediction of mechanical hemolysis in aortic valved prostheses. Eur J Mech B Fluids 35:47–53

    Article  Google Scholar 

  196. Van Loon R, Anderson P, van de Vosse F (2006) A fluid-structure interaction method with solid-rigid contact for heart valve dynamics. J Comput Phys 217(2):806–823

    Article  Google Scholar 

  197. Van Loon R, Anderson PD, de Hart J, Baaijens FPT (2004) A combined fictitious domain/adaptive meshing method for fluid-structure interaction in heart valves. Int J Numer Methods Fluids 46(5):533–544

    Article  Google Scholar 

  198. Vergara C, Viscardi F, Antiga L, Luciani GB (2012) Influence of bicuspid valve geometry on ascending aortic fluid dynamics: a parametric study. Artif Organs 36(4):368–378

    Article  PubMed  Google Scholar 

  199. Versteeg HK, Malalasekera W (2007) An introduction to computational fluid dynamics: the finite, vol method. Pearson Education, London

    Google Scholar 

  200. Vierendeels J, Dumont K, Dick E, Verdonck P (2005) Analysis and stabilization of fluid-structure interaction algorithm for rigid-body motion. AIAA J 43(12):2549–2557

    Article  Google Scholar 

  201. Vigmostad SC, Udaykumar HS (2011) Algorithms for fluid-structure interaction. In: Chandran KB, Udaykumar HS, Reinhardt JM (eds) Image-based computational modeling of the human circulatory and pulmonary systems. Springer, Boston, pp 191–234

    Google Scholar 

  202. Vitale N, De Feo M, De Santo LS, Pollice A, Tedesco N, Cotrufo M (1999) Dose-dependent fetal complications of warfarin in pregnant women with mechanical heart valves. J Am Coll Cardiol 33(6):1637–1641

    Article  CAS  PubMed  Google Scholar 

  203. Votta E, Le TB, Stevanella M, Fusini L, Caiani EG, Redaelli A, Sotiropoulos F (2013) Toward patient-specific simulations of cardiac valves: state-of-the-art and future directions. J Biomech 46(2):217–28

    Article  PubMed  Google Scholar 

  204. Wendell DC, Samyn MM, Cava JR, Ellwein LM, Krolikowski MM, Gandy KL, Pelech AN, Shadden SC, LaDisa JF (2012) Including aortic valve morphology in computational fluid dynamics simulations: initial findings and application to aortic coarctation. Med Eng Phys 35(6):723–735

    Article  PubMed  Google Scholar 

  205. Wilcox DC, Introduction I (1994) Simulation of transition with a two-equation turbulence model. AIAA J 32(2):247–255

    Article  Google Scholar 

  206. Woo YR, Yoganathan AP (1984) Two-component laser Doppler anemometer for measurement of velocity and turbulent shear stress near prosthetic heart valves. Med Instrum 19(5):224–231

    Google Scholar 

  207. Woo Y-R, Yoganathan AP (1986a) In vitro pulsatile flow velocity and shear stress measurements in the vicinity of mechanical mitral heart valve prostheses. J Biomech 19(1):39–51

    Article  CAS  PubMed  Google Scholar 

  208. Woo Y-R, Yoganathan AP (1986b) Pulsatile flow velocity and shear stress measurements on the St. Jude bileaflet valve prosthesis. Scand J Thorac Cardiovasc Surg 20(1):15–28

    Article  CAS  PubMed  Google Scholar 

  209. Woo Y-R, Yoganathan AP (1986c) Pulsatile flow velocity and shear stress measurements on the St. Jude bileaflet valve prosthesis. Scand J Thorac Cardiovasc Surg 20(1):15–28

    Article  CAS  PubMed  Google Scholar 

  210. Wu J, Yun BM, Fallon AM, Hanson SR, Aidun CK, Yoganathan AP (2011) Numerical investigation of the effects of channel geometry on platelet activation and blood damage. Ann Biomed Eng 39(2):897–910

    Article  PubMed  Google Scholar 

  211. Xenos M, Girdhar G, Alemu Y, Jesty J, Slepian M, Einav S, Bluestein D (2010) Device thrombogenicity emulator (DTE)—design optimization methodology for cardiovascular devices: a study in two bileaflet MHV designs. J Biomech 43(12):2400–2409

    Article  PubMed  PubMed Central  Google Scholar 

  212. Xia GH, Zhao Y, Yeo JH (2009) Parallel unstructured multigrid simulation of 3D unsteady flows and fluid-structure interaction in mechanical heart valve using immersed membrane method. Comput Fluids 38(1):71–79

    Article  Google Scholar 

  213. Xu S (2008) The immersed interface method for simulating prescribed motion of rigid objects in an incompressible viscous flow. J Comput Phys 227(10):5045–5071

    Article  Google Scholar 

  214. Yang J (2016) Sharp interface direct forcing immersed boundary methods: a summary of some algorithms and applications. J Hydrodyn 28(5):713–730

    Article  Google Scholar 

  215. Yang J, Balaras E (2006) An embedded-boundary formulation for large-eddy simulation of turbulent flows interacting with moving boundaries. Ph.D. thesis, University of Minnesota

  216. Yin W, Alemu Y, Affeld K, Jesty J, Bluestein D (2004) Flow-induced platelet activation in bileaflet and monoleaflet mechanical heart valves. Ann Biomed Eng 32(8):1058–1066

    Article  PubMed  Google Scholar 

  217. Yoganathan AP (2000) Cardiac valve prostheses. In: Bronzino EJD (ed) The biomedical engineering handbook, chapter 127, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  218. Yoganathan AP, Chaux A, Gray RJ, Woo Y-R, DeRobertis M, Williams FP, Matloff JM (1984) Bileaflet, tilting disc and porcine aortic valve substitutes. In vitro. J Am Coll Cardiol 3(2):313–320

    Article  CAS  PubMed  Google Scholar 

  219. Yoganathan aP, He Z, Casey JS (2004) Fluid mechanics of heart valves. Ann Rev Biomed Eng 6:331–362

    Article  CAS  Google Scholar 

  220. Yun BM, Aidun CK, Yoganathan AP (2014a) Blood damage through a bileaflet mechanical heart valve: a quantitative computational study using a multiscale suspension flow solver. J Biomech Eng 136(10):17

    Google Scholar 

  221. Yun BM, Dasi LP, Aidun CK, Yoganathan aP (2014b) Computational modelling of flow through prosthetic heart valves using the entropic lattice-Boltzmann method. J Fluid Mech 743:170–201

    Article  Google Scholar 

  222. Yun BM, Dasi LP, Aidun CK, Yoganathan aP (2014c) Highly resolved pulsatile flows through prosthetic heart valves using the entropic lattice-Boltzmann method. J Fluid Mech 754:122–160

    Article  CAS  Google Scholar 

  223. Yun BM, McElhinney DB, Arjunon S, Mirabella L, Aidun CK, Yoganathan AP (2014d) Computational simulations of flow dynamics and blood damage through a bileaflet mechanical heart valve scaled to pediatric size and flow. J Biomech 47(12):3169–3177

    Article  PubMed  PubMed Central  Google Scholar 

  224. Yun BM, Wu J, Simon HA, Arjunon S, Sotiropoulos F, Aidun CK, Yoganathan AP (2012) A numerical investigation of blood damage in the hinge area of aortic bileaflet mechanical heart valves during the leakage phase. Anna Biomed Eng 40(7):1468–1485

    Article  Google Scholar 

  225. Zakaria MS, Ismail F, Tamagawa M, Fazli A, Aziz A, Wiriadidjaya S, Basri AA, Ahmad KA (2016) Numerical analysis using a fixed grid method for cardiovascular flow application. J Med Imaging Health Inf 6(6):1483–1488

    Article  Google Scholar 

  226. Zhen TK, Zubair M, Ahmad KA (2011) Experimental and numerical investigation of the effects of passive vortex generators on Aludra UAV performance. Chin J Aeronaut 24(5):577–583

    Article  Google Scholar 

Download references

Acknowledgements

This research is made possible in part by the Universiti Putra Malaysia Fundamental Research Grant Scheme (No. 5524382), Universiti Teknikal Malaysia Melaka and scholarship from the Malaysian Ministry of Higher Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamarul Arifin Ahmad.

Ethics declarations

Conflict of interest

The authors declare that they do not have any conflict of interest. Moreover, they do not have financial and personal relationships with other people or organizations that can inappropriately influence their work.

Appendix

Appendix

See Table 8

Table 8 Summary of previous MHV numerical studies

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakaria, M.S., Ismail, F., Tamagawa, M. et al. Review of numerical methods for simulation of mechanical heart valves and the potential for blood clotting. Med Biol Eng Comput 55, 1519–1548 (2017). https://doi.org/10.1007/s11517-017-1688-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-017-1688-9

Keywords

Navigation