Skip to main content
Log in

Characterization of Hemodynamic Forces Induced by Mechanical Heart Valves: Reynolds vs. Viscous Stresses

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Bileaflet mechanical heart valves (BMHV) are widely used to replace diseased heart valves. Implantation of BMHV, however, has been linked with major complications, which are generally considered to be caused by mechanically induced damage of blood cells resulting from the non-physiological hemodynamics environment induced by BMHV, including regions of recirculating flow and elevated Reynolds (turbulence) shear stress levels. In this article, we analyze the results of 2D high-resolution velocity measurements and full 3D numerical simulation for pulsatile flow through a BMHV mounted in a model axisymmetric aorta to investigate the mechanical environment experienced by blood elements under physiologic conditions. We show that the so-called Reynolds shear stresses neither directly contribute to the mechanical load on blood cells nor is a proper measurement of the mechanical load experienced by blood cells. We also show that the overall levels of the viscous stresses, which comprise the actual flow environment experienced by cells, are apparently too low to induce damage to red blood cells, but could potentially damage platelets. The maximum instantaneous viscous shear stress observed throughout a cardiac cycle is  <15 N/m2. Our analysis is restricted to the flow downstream of the valve leaflets and thus does not address other areas within the BMHV where potentially hemodynamically hazardous levels of viscous stresses could still occur (such as in the hinge gaps and leakage jets).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1
FIGURE 2
FIGURE 3
FIGURE 4
FIGURE 5
FIGURE 6
FIGURE 7
FIGURE 8
FIGURE 9
FIGURE 10
FIGURE 11
FIGURE 12
FIGURE 13
FIGURE 14
FIGURE 15

Similar content being viewed by others

References

  1. Baldwin J. T., Deutsch S., Geselowitz D. B., Tarbell J. M. (1994) LDA measurements of mean velocity and Reynolds stress fields within an artificial heart ventricle. J. Biomech. Eng. 116(2):190–200

    PubMed  CAS  Google Scholar 

  2. Bernstein E. F., Marzec U., Clayman M. D., Swanson S., Johnston G. G. (1977) Platelet function following surface injury and shear stress: adhesion, aggregation, release, and factor 3 activity. Ann. NY Acad. Sci. 283:138–158

    Article  CAS  Google Scholar 

  3. Bluestein D., Li Y. M., Krukenkamp I. B. (2002) Free emboli formation in the wake of bi-leaflet mechanical heart valves and the effects of implantation techniques. J. Biomech. 35(12):1533–1540

    Article  PubMed  CAS  Google Scholar 

  4. Chandran K. B., Cabell G. N., Khalighi B., Chen C. J. (1983) Laser anemometry measurements of pulsatile flow past aortic valve prostheses. J. Biomech. 16(10):865–873

    Article  PubMed  CAS  Google Scholar 

  5. Chien S. (1977) Red cell membrane and hemolysis. In: Hwang N. H. C., Normann N. A. (eds) Cardiovascular Flow Dynamics and Measurements. University Park Press, Baltimore, pp 757–799

    Google Scholar 

  6. Croughan M. S., Hamel J. F., Wang D. I. (1987) Hydrodynamic effects on animal cells grown in microcarrier cultures. Biotechnol. Bioeng. 29(1):130–141

    Article  PubMed  CAS  Google Scholar 

  7. Dasi, L. P., L. Ge, H. A. Simon, F. Sotiropoulos, and A. P. Yoganathan. Vorticity dynamics of a bileaflet mechanical valve in an axisymmetric aorta. Phys. Fluids 19:067105, 2007

    Google Scholar 

  8. Davidson, P. A. Turbulence: An Introduction for Scientists and Engineers. Oxford University Press, 2004

  9. Ellis J. T., Healy T. M., Fontaine A. A., Saxena R., Yoganathan A. P. (1996) Velocity measurements and flow patterns within the hinge region of a Medtronic Parallel bileaflet mechanical valve with clear housing. J Heart Valve Dis 5(6):591–599

    PubMed  CAS  Google Scholar 

  10. Figlio R. S., Mueller T. J. (1981) On the hemolytic and thrombogenic potential of occluder prosthetic heart valves from in-vitro measurements. J. Biomech. Eng. 103:83–90

    Article  Google Scholar 

  11. Forstrom, R. J. A new measure of erythrocyte membrane strength: the jet fragility test. PhD thesis, University of Minnesota, 1969

  12. Ge L., Leo H. L., Sotiropoulos F., Yoganathan A. P. (2005) Flow in a mechanical bileaflet heart valve at laminar and near-peak systole flow rates: CFD simulations and experiments. J. Biomech. Eng. Trans. ASME 127(5):782–797

    Article  Google Scholar 

  13. Ge L., Sotiropoulos F. (2007) A numerical method for solving the 3D unsteady incompressible Navier–Stokes equations in curvilinear domains with complex immersed boundaries. J. Comput. Phys. 225:1782–1809

    Article  PubMed  Google Scholar 

  14. Giersiepen M., Wurzinger L. J., Opitz R., Reul H. (1990) Estimation of shear stress-related blood damage in heart valve prostheses–in vitro comparison of 25 aortic valves. Int. J. Artif. Organs. 13(5):300–306

    PubMed  CAS  Google Scholar 

  15. Goldsmith H. L., Skalak R. (1975) Hemodynamics. Annu. Rev. Fluid Mech. 7:213–247

    Article  Google Scholar 

  16. Goubergrits L. (2006) Numerical modeling of blood damage: current status, challenges and future prospects. Expert Rev. Med. Dev. 3(5):527–531

    Article  Google Scholar 

  17. Grigioni M., Daniele C., D’Avenio G., Barbaro V. (1999) A discussion on the threshold limit for hemolysis related to Reynolds shear stress. J. Biomech. 32(10):1107–1012

    Article  PubMed  CAS  Google Scholar 

  18. Grigioni M., Daniele C., D’Avenio G., Barbaro V. (2001) The influence of the leaflets’ curvature on the flow field in two bileaflet prosthetic heart valves. J. Biomech. 34(5):613–21

    Article  PubMed  CAS  Google Scholar 

  19. Grigioni M., Daniele C., D’Avenio G., Barbaro V. (2002) Evaluation of the surface-averaged load exerted on a blood element by the Reynolds shear stress field provided by artificial cardiovascular devices. J. Biomech. 35(12):1613–1622

    Article  PubMed  Google Scholar 

  20. Hellums J. D. (1994) 1993 Whitaker lecture: Biorheology in thrombosis research. Ann. Biomed. Eng. 22(5):445–455

    Article  PubMed  CAS  Google Scholar 

  21. Hellums J. D., Brown C. H. (1977) Blood cell damage by mechanical forces. Hwang N. H. C., Normann N. A. (eds) Cardiovascular Flow Dynamics and Measurements. University Park Press, Baltimore, pp. 799–823

    Google Scholar 

  22. Hinze J. O. (1955) Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes. AIChE J. 1(3):289–295

    Article  CAS  Google Scholar 

  23. Hussain A. K. M. F. (1977) Mechanics of pulsatile flows of relevance to the cardiovascular system. Hwang N. H. C., Normann N. A. (eds) Cardiovascular Flow Dynamics and Measurements. University Park Press, Baltimore, pp 541–632

    Google Scholar 

  24. Johnson, R. W. The Handbook of Fluid Dynamics. CRC Press, 1998

  25. Jones S. A. (1995) A relationship between reynolds stresses and viscous dissipation: Implications to red cell damage. Ann. Biomed. Eng. 23(1):21–28

    Article  PubMed  CAS  Google Scholar 

  26. King M. J., Corden J., David T., Fisher J. (1996) A three-dimensional, time-dependent analysis of flow through a bileaflet mechanical heart valve: comparison of experimental and numerical results. J. Biomech. 29(5):609–618

    Article  PubMed  CAS  Google Scholar 

  27. Kleine P., Perthel M., Nygaard H., Hansen S. B., Paulsen P. K., Riis C., Laas J. (1998) Medtronic Hall versus St. Jude Medical mechanical aortic valve: downstream turbulences with respect to rotation in pigs. J. Heart Valve Dis. 7(5):548–555

    PubMed  CAS  Google Scholar 

  28. Kunas K. T., Papoutsakis E. T. (1990) Damage mechanisms of suspended animal cells in agitated bioreactors with and without bubble entrainment. Biotechnol. Bioeng. 36:476–483

    Article  CAS  PubMed  Google Scholar 

  29. Laas J., Kleine P., Hasenkam M. J., Nygaard H. (1999) Orientation of tilting disc and bileaflet aortic valve substitutes for optimal hemodynamics. Ann. Thorac. Surg. 68(3):1096–1099

    Article  PubMed  CAS  Google Scholar 

  30. Leverett L. B., Hellum J. D., Alfrey C. P., Lynch E. C. (1972) Red blood cell damage by shear stress. Biophys. J. 12:257–273

    PubMed  CAS  Google Scholar 

  31. Lim W. L., Chew Y. T., Chew T. C., Low H. T. (1998) Steady flow dynamics of prosthetic aortic heart valves: a comparative evaluation with piv techniques. J. Biomech. 31(5):411–421

    Article  PubMed  CAS  Google Scholar 

  32. Lim W. L., Chew Y. T., Chew T. C., Low H. T. (2001) Pulsatile flow studies of a porcine bioprosthetic aortic valve in vitro: PIV measurements and shear-induced blood damage. J. Biomech. 34(11):1417–1427

    Article  PubMed  CAS  Google Scholar 

  33. Liu J. S., Lu P. C., Chu S. H. (2000) Turbulence characteristics downstream of bileaflet aortic valve prostheses. J. Biomech. Eng. 122(2):118–124

    Article  PubMed  CAS  Google Scholar 

  34. Lu P. C., Lai H. C., Liu J. S. (2001) A reevaluation and discussion on the threshold limit for hemolysis in a turbulent shear flow. J. Biomech. 34(10):1361–1364

    Article  PubMed  CAS  Google Scholar 

  35. Luff J. D., Drouillard T., Rompage A. M., Linne M. A., Hertzberg J. R. (1999) Experimental uncertainties associated with particle image velocimetry (PIV) based vorticity algorithms. Exp. Fluid 26(1):36–54

    Article  CAS  Google Scholar 

  36. McQueen A., Meilhoc E., Bailey J. E. (1987) Flow effects on the viability and lysis of suspended mammalian cells. Biotechnol. Lett. 9(12):831–836

    Article  CAS  Google Scholar 

  37. Moin P., Mahesh K. (1998) Direct numerical simulation: a tool in turbulence research. Ann. Rev. Fluid Mech. 30:539–578

    Article  Google Scholar 

  38. Nyboe C., Funder J. A., Smerup M. H., Nygaard H., Hasenkam J. M. (2006) Turbulent stress measurements downstream of three bileaflet heart valve designs in pigs. Eur. J. Cardio-Thorac. Surg. 29:1008–1013

    Article  Google Scholar 

  39. Nygaard H., Paulsen P. K., Hasenkam J. M., Pedersen E. M., Rovsing P. E. (1994) Turbulent stresses downstream of three mechanical aortic valve prostheses in human beings. J. Thorac. Cardiovasc. Surg. 107:438–446

    PubMed  CAS  Google Scholar 

  40. Paul R., Apel J., Klaus S., Schugner F., Schwindke P., Reul H. (2003) Shear stress related blood damage in laminar Couette flow. Artif. Organs. 27(6):517–529

    Article  PubMed  Google Scholar 

  41. Quinlan N. J., Dooley P. N. (2007) Models of flow-induced loading on blood cells in laminar and turbulent flow, with application to cardiovascular device flow. Ann. Biomed. Eng. 35(8):1347–1356

    Article  PubMed  Google Scholar 

  42. Quinlan, N.J. Comment on “prosthetic heart valves’ mechanical loading of red blood cells in patients with hereditary membrane defects” by Grigioni et al. J. Biomech. 38:1557–1565, 39(13):2542, 2006.

    Google Scholar 

  43. Sallam A., Hwang N. (1984) Human red blood cell hemolysis in a turbulent shear flow: contribution of Reynolds shear stresses. Biorheology 21:783–797

    PubMed  CAS  Google Scholar 

  44. Schmid-Schonbein, H., and R. Wells. Fluid drop-like transition of erythrocytes under shear. Science 165(3890):288, 1969

    Google Scholar 

  45. Steegers A., Paul R., Reul H., Rau G. (1999) Leakage flow at mechanical heart valve prostheses: improved washout or increased blood damage? J. Heart Valve Dis. 8(3):312–323

    PubMed  CAS  Google Scholar 

  46. Stein P. D., Sabbah H. N. (1974) Measured turbulence and its effect on thrombus formation. Circ. Res. 35(4):608–614

    PubMed  CAS  Google Scholar 

  47. Sutera S. P. (1977) Flow-induced trauma to blood cells. Circ. Res. 41(1):2–8

    PubMed  CAS  Google Scholar 

  48. Sutera S. P., Mehrjardi M. H. (1975) Deformation and fragmentation of human red blood cells in turbulent shear flow. Biophys. J. 15(1):1–10

    PubMed  CAS  Google Scholar 

  49. Tiederman W. G., Privette R. M., Phillips W. M. (1988) Cycle-to-cycle variation effects on turbulent shear stress measurements in pulsatile flows. Exp. Fluids 6(4):265–272

    Article  Google Scholar 

  50. Travis, B. R., T. D. Christensen, M. D. Morten Smerup, M. S. Olsen, J. M. H. MD, and M. S. Hans Nygaard. An in vivo method for measuring turbulence in mechanical prosthesis leakage jets. J. Biomech. Eng. 126:26, 2004

  51. Travis, B. R., H. L. Leo, P. A. Shah, D. H. Frakes, and A. P. Yoganathan. An analysis of turbulent shear stresses in leakage flow through a bileaflet mechanical prostheses. J. Biomech. Eng. 124:155, 2002

    Google Scholar 

  52. Wurzinger L. J., Opitz R., Eckstein H. (1986) Mechanical bloodtrauma. An overview. Angéiologie (Paris) 38(3):81–97

    Google Scholar 

  53. Yoganathan A. P., He Z., Jones S. C. (2004) Fluid mechanics of heart valves. Ann. Rev. Biomed. Eng. 6:331–362

    Article  CAS  Google Scholar 

  54. Yoganathan A. P., Corcoran W. H., Harrison E. C., Carl J. R. (1978) The Bjork-Shiley aortic prosthesis: flow characteristics, thrombus formation and tissue overgrowth. Circulation 58(1):70–76

    PubMed  CAS  Google Scholar 

  55. Yoganathan A. P., Woo Y. R., Sung H. W. (1986) Turbulent shear stress measurements in the vicinity of aortic heart valve prostheses. J. Biomech. 19(6):433–442

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from Tom and Shirley Curley’s and the National Heart, Lung, and Blood Institute (HL 720621). L. G. and F. S. are grateful to the University of Minnesota Supercomputing Institute for assistance with the computations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Ge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ge, L., Dasi, L.P., Sotiropoulos, F. et al. Characterization of Hemodynamic Forces Induced by Mechanical Heart Valves: Reynolds vs. Viscous Stresses. Ann Biomed Eng 36, 276–297 (2008). https://doi.org/10.1007/s10439-007-9411-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-007-9411-x

Keywords

Navigation