Skip to main content
Log in

Role of Computational Simulations in Heart Valve Dynamics and Design of Valvular Prostheses

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Computational simulations are playing an increasingly important role in enhancing our understanding of the normal human physiological function, etiology of diseased states, surgical and interventional planning, and in the design and evaluation of artificial implants. Researchers are taking advantage of computational simulations to speed up the initial design of implantable devices before a prototype is developed and hence able to reduce animal experimentation for the functional evaluation of the devices under development. A review of the reported studies to date relevant to the simulation of the native and prosthetic heart valve dynamics is the subject of the present paper. Potential future directions toward multi-scale simulation studies for our further understanding of the physiology and pathophysiology of heart valve dynamics and valvular implants are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Akins, C. W. Results with mechanical cardiac valvular prostheses. Ann. Thorac. Surg. 60(6):1836–1844, 1995.

    Google Scholar 

  2. Akutsu, T., and D. Higuchi. Effect of the mechanical prosthetic mono- and bileaflet heart valve orientation on the flow field inside the simulated ventricle. J. Artif. Organs 3:126–135, 2000.

    Google Scholar 

  3. Akutsu, T., R. Imai, and Y. Deguchi. Effect of the flow field of mechanical bileaflet mitral prostheses on valve closing. J. Artif. Organs 8:161–170, 2005.

    Google Scholar 

  4. Akutsu, T., and T. Masuda. Three-dimensional flow analysis of a mechanical bileaflet mitral prosthesis. J. Artif. Organs 6:112–123, 2003.

    Google Scholar 

  5. Akutsu, T., and V. J. Modi. Unsteady flow dynamics of several mechanical prosthetic heart valves using a two component laser Doppler anemometer system. Artif. Organs 21:1110–1120, 1997.

    Article  Google Scholar 

  6. Alemu, Y., and D. Bluestein. Flow-induced platelet activation and damage accumulation in a mechanical heart valve: numerical studies. Artif. Organs 31(9):677–688, 2007.

    Google Scholar 

  7. AlMomani, T., H. S. Udaykumar, J. S. Marshall, and K. B. Chandran. Micro-scale dynamic simulation of erythrocyte–platelet interaction in blood flow. Ann. Biomed. Eng. 36:905–920, 2008.

    Google Scholar 

  8. Avanzini, A. A computational procedure for prediction of structural effects of edge-to-edge repair on mitral valve. J. Biomech. Eng. 130(3):031015, 2008.

    Google Scholar 

  9. Billiar, K. L., and M. S. Sacks. Biaxial mechanical properties of the natural and glutaraldehyde treated aortic valve cusp. Part I. Experimental results. J. Biomech. Eng. 122(1):23–30, 2000.

    Google Scholar 

  10. Billiar, K. L., and M. S. Sacks. Biaxial mechanical properties of the native and glutaraldehyde-treated aortic valve cusp. Part II. A structural constitutive model. J. Biomech. Eng. 122(4):327–335, 2000.

    Google Scholar 

  11. Black, M. M., I. C. Howard, X. Huang, and E. A. Patterson. A three-dimensional analysis of a bioprosthetic heart valve. J. Biomech. 24(9):793–801, 1991.

    Google Scholar 

  12. Bluestein, D., Y. M. Li, and I. B. Krukenkamp. Free emboli formation in the wake of bi-leaflet mechanical heart valves and the effect of implantation techniques. J. Biomech. 35:1533–1540, 2002.

    Google Scholar 

  13. Bluestein, D., E. Rambod, and M. Gharib. Vortex shedding as a mechanism for free emboli formation in mechanical heart valves. J. Biomech. Eng. 122(2):125–134, 2000.

    Google Scholar 

  14. Borazjani, R. N., L. Ge, and F. Sotiropoulos. Curvilinear immersed boundary method for simulating fluid–structure interaction with complex 3D rigid bodies. J. Comput. Phys. 227:7587–7620, 2008.

    MATH  MathSciNet  Google Scholar 

  15. Brucker, C., U. Steinseifer, W. Schroder, and H. Reul. Unsteady flow through a new mechanical heart valve prosthesis analysed by digital particle image velocimetry. Meas. Sci. Technol. 13:1043–1049, 2002.

    Google Scholar 

  16. Cannegieter, S. C., F. R. Rosendaal, and E. Briet. Thromboembolic and bleeding complications in patients with mechanical heart valve prostheses. Circulation 89(2):635–641, 1994.

    Google Scholar 

  17. Carmody, C. J., G. Burriesci, I. C. Howard, and E. A. Patterson. An approach to the simulation of fluid–structure interaction in the aortic valve. J. Biomech. 39(1):158–169, 2006.

    Google Scholar 

  18. Chandran, K. B., S. H. Kim, and G. Han. Stress distribution on the cusps of a polyurethane trileaflet heart valve prosthesis in the closed position. J. Biomech. 24(6):385–395, 1991.

    Google Scholar 

  19. Chandran, K. B., C. S. Lee, and L. D. Chen. Pressure field in the vicinity of mechanical valve occluders at the instant of valve closure: correlation with cavitation initiation. J. Heart Valve Dis. 3(Suppl 1):S65–S75, 1994; (discussion S75-6).

    Google Scholar 

  20. Chaput, M., M. D. Handschumacher, F. Tournoux, L. Hua, J. L. Guerrero, G. J. Vlahakes, and R. A. Levine. Mitral leaflet adaptation to ventricular remodeling occurrence and adequacy in patients with functional mitral regurgitation. Circulation 118:845–852, 2008.

    Google Scholar 

  21. Cheng, R., Y. G. Lai, and K. B. Chandran. Two-dimensional fluid–structure interaction simulation of bi-leaflet mechanical heart valve flow dynamics. Heart Valve Dis. 12:772–780, 2003.

    Google Scholar 

  22. Cheng, R., Y. G. Lai, and K. B. Chandran. Three-dimensional fluid–structure interaction simulation of bileaflet mechanical heart valve flow dynamics. Ann. Biomed. Eng. 32(11):1469–1481, 2004.

    Google Scholar 

  23. Dal Pan, F., G. Donzella, C. Fucci, and M. Schreiber. Structural effects of an innovative surgical technique to repair heart valve defects. J. Biomech. 38(12):2460–2471, 2005.

    Google Scholar 

  24. de Hart, J., F. P. Baaijens, G. W. Peters, and P. J. Schreurs. A computational fluid–structure interaction analysis of a fiber-reinforced stentless aortic valve. J. Biomech. 36(5):699–712, 2003.

    Google Scholar 

  25. de Hart, J., G. W. Peters, P. J. Schreurs, and F. P. Baaijens. A two-dimensional fluid–structure interaction model of the aortic valve [correction of value]. J. Biomech. 33(9):1079–1088, 2000.

    Google Scholar 

  26. de Hart, J., G. W. Peters, P. J. Schreurs, and F. P. Baaijens. A three-dimensional computational analysis of fluid–structure interaction in the aortic valve. J. Biomech. 36(1):103–112, 2003.

    Google Scholar 

  27. De Hart, J., G. W. Peters, P. J. Schreurs, and F. P. Baaijens. Collagen fibers reduce stresses and stabilize motion of the aortic valve leaflets during systole. J. Biomech. 37:303–311, 2004.

    Google Scholar 

  28. Dowsey, A. W., J. Keegan, M. Lerotic, S. A. Thom, D. N. Firmin, and G.-Z. Yang. Motion-compensated MR valve imaging with COMB tag tracking and super-resolution enhancement. Med. Image Anal. 11:478–491, 2007.

    Google Scholar 

  29. Dumont, K., J. M. Stijnen, J. Vierendeels, F. N. van de Vosse, and P. R. Verdonck. Validation of a fluid–structure interaction model of a heart valve using the dynamic mesh method in fluent. Comput. Methods Biomech. Biomed. Eng. 7(3):139–146, 2004.

    Google Scholar 

  30. Dumont, K., J. Vierendeels, R. Kaminsky, G. Van Nooten, P. Verdonck, and D. Bluestein. Comparison of hemodynamic and thrombogenic performance of two bileaflet mechanical heart valves suing CFD/FSI model. J. Biomech. Eng. 129:558–565, 2007.

    Google Scholar 

  31. Dumont, K., J. Vierendeels, P. Segers, G. Van Nooten, and P. Verdonck. Predicting ATS open pivot heart valve performance with computational fluid dynamics. J. Heart Valve Dis. 14:393–399, 2005.

    Google Scholar 

  32. Engelmayr, G. C., D. K. Hildebrand, F. W. Sutherland, J. E. Mayer, and M. S. Sacks. A novel bioreactor for the dynamic flexural stimulation of tissue engineered heart valve biomaterials. Biomaterials 24(14):2523–2532, 2003.

    Google Scholar 

  33. Fedak, P. W., S. Verma, T. E. David, R. L. Leask, R. D. Weisel, and J. Butany. Clinical and pathophysiological implications of a bicuspid aortic valve. Circulation 106(8):900–904, 2002.

    Google Scholar 

  34. Flachskampf, F. A., S. Chandra, A. Gaddipatti, R. A. Levine, A. E. Weyman, W. Ameling, P. Hanrath, and J. D. Thomas. Analysis of shape and motion of the mitral annulus in subjects with and without cardiomyopathy by echocardiographic 3-dimensional reconstruction. J. Am. Soc. Echocardiogr. 13:277–287, 2000.

    Google Scholar 

  35. Fogelson, A. L., and R. D. Guy. Platelet–wall interactions in continuum models of platelet thrombosis: formulation and numerical solution. Math. Med. Biol. 21(4):293–334, 2004.

    MATH  Google Scholar 

  36. Gao, Z. B., S. Pandya, N. Hosein, M. S. Sacks, and N. H. C. Hwang. Bioprosthetic heart valve leaflet motion monitored by dual camera stereo photogrammetry. J. Biomech. 33:199–207, 2000.

    Google Scholar 

  37. Ge, L., L. P. Dasi, F. Sotiropoulos, and A. P. Yoganathan. Characterization of hemodynamic forces induced by mechanical heart valves: Reynolds vs. viscous stresses. Ann. Biomed. Eng. 36(2):276–297, 2008.

    Google Scholar 

  38. Ge, L., P. Fellow, H. L. Leo, P. D. Student, F. Sotiropoulos, and A. P. Yoganathan. Flow in a mechanical bileaflet heart valve at laminar and near-peak systole flow rates: CFD simulations and experiments. J. Biomech. Eng. 127:782, 2005.

    Google Scholar 

  39. Ge, L., S. C. Jones, F. Sotiropoulos, T. M. Healy, and A. P. Yoganathan. Numerical simulation of flow in mechanical heart valves: grid resolution and the assumption of flow symmetry. J. Biomech. Eng. 125(5):709–718, 2003.

    Google Scholar 

  40. Ge, L., and F. Sotiropoulos. A numerical method for solving the 3D unsteady incompressible Navier–Stokes equations in curvilinear domains with complex immersed boundaries. J. Comput. Phys. 225:1782–1809, 2007.

    MATH  MathSciNet  Google Scholar 

  41. Ghista, D. N., and H. Reul. Optimal prosthetic aortic leaflet valve: design parametric and longevity analyses: development of the Avcothane-51 leaflet valve based on the optimum design analysis. J. Biomech. 10(5–6):313–324, 1977.

    Google Scholar 

  42. Gnyaneshwar, R., R. K. Kumar, and K. R. Balakrishnan. Dynamic analysis of the aortic valve using a finite element model. Ann. Thorac. Surg. 73(4):1122–1129, 2002.

    Google Scholar 

  43. Gorman, III, J. H., K. B. Gupta, J. T. Streicher, R. C. Gorman, B. M. Jackson, M. B. Ratcliffe, D. K. Bogen, and L. H. Edmunds, Jr. Dynamic three-dimensional imaging of the mitral valve and left ventricle by rapid sonomicrometry array localization. J. Thorac. Cardiovasc. Surg. 112(3):712–726, 1996.

    Google Scholar 

  44. Gould, P. L., A. Cataloglu, G. Dhatt, A. Chattopadhyay, and R. E. Clark. Stress analysis of the human aortic valve. Comput. Struct. 3:377–384, 1973.

    Google Scholar 

  45. Govindarajan, V., H. S. Udaykumar, and K. B. Chandran. Two-dimensional simulation of flow and platelet dynamics in the hinge region of a mechanical heart valve. J. Biomech. Eng. 131:031002-1–031002-12, 2009.

    Google Scholar 

  46. Govindarajan, V., H. S. Udaykumar, and K. B. Chandran. Flow dynamics comparison between recessed hinge and open pivot bi-leaflet heart valve designs. J. Mech. Med. Biol. 9:161–176, 2009.

    Google Scholar 

  47. Govindarajan, V., H. S. Udaykumar, L. H. Herbertson, S. Deutsch, K. B. Manning, and K. B. Chandran. Impact of design parameters on bileaflet mechanical heart valve flow dynamics. J. Heart Valve Dis. 18:535–545, 2009.

    Google Scholar 

  48. Govindarajan, V., H. S. Udaykumar, L. H. Herbertson, S. Deutsch, K. B. Manning, and K. B. Chandran. Two-dimensional simulation of closing dynamics of a tilting disc mechanical heart valve. J. Med. Dev. 4:011001-1–011001-11, 2010. doi:10.1115/1.4000876.

  49. Grande, K. J., R. P. Cochran, P. G. Reinhall, and K. S. Kunzelman. Stress variations in the human aortic root and valve: the role of anatomic asymmetry. Ann. Biomed. Eng. 26(4):534–545, 1998.

    Google Scholar 

  50. Grande, K. J., R. P. Cochran, P. G. Reinhall, and K. S. Kunzelman. Mechanisms of aortic valve incompetence in aging: a finite element model. J. Heart Valve Dis. 8(2):149–156, 1999.

    Google Scholar 

  51. Grande, K. J., R. P. Cochran, P. G. Reinhall, and K. S. Kunzelman. Mechanisms of aortic valve incompetence: finite element modeling of aortic root dilatation. Ann. Thorac. Surg. 69(6):1851–1857, 2000.

    Google Scholar 

  52. Grande-Allen, K. J., R. P. Cochran, P. G. Reinhall, and K. S. Kunzelman. Re-creation of sinuses is important for sparing the aortic valve: a finite element study. J. Thorac. Cardiovasc. Surg. 119(4 Pt 1):753–763, 2000.

    Google Scholar 

  53. Grande-Allen, K. J., R. P. Cochran, P. G. Reinhall, and K. S. Kunzelman. Mechanisms of aortic valve incompetence: finite-element modeling of Marfan syndrome. J. Thorac. Cardiovasc. Surg. 122(5):946–954, 2001.

    Google Scholar 

  54. Grande-Allen, K. J., R. P. Cochran, P. G. Reinhall, and K. S. Kunzelman. Finite-element analysis of aortic valve-sparing: influence of graft shape and stiffness. IEEE Trans. Biomed. Eng. 48(6):647–659, 2001.

    Google Scholar 

  55. Grashow, J. S., M. S. Sacks, J. Liao, and A. P. Yoganathan. Planar biaxial creep and stress relaxation of the mitral valve anterior leaflet. Ann. Biomed. Eng. 34:1509–1518, 2006.

    Google Scholar 

  56. Grashow, J. S., A. P. Yoganathan, and M. S. Sacks. Biaxial stress–stretch behavior of the mitral valve anterior leaflet at physiologic strain rates. Ann. Biomed. Eng. 34:315–325, 2006.

    Google Scholar 

  57. Grigioni, M., C. Daniele, G. D’Avenio, and V. Barbaro. The influence of the leaflets’ curvature on the flow field in two bileaflet prosthetic heart valves. J. Biomech. 34:613–621, 2001.

    Google Scholar 

  58. Hamid, M. S., H. N. Sabbah, and P. D. Stein. Finite element evaluation of stresses on closed leaflets of bioprosthetic heart valves with flexible stents. Finite Elem. Anal. Des. 1:213–225, 1985.

    MATH  Google Scholar 

  59. Hamid, M. S., H. N. Sabbah, and P. D. Stein. Influence of stent height upon stresses on the cusps of closed bioprosthetic valves. J. Biomech. 19(9):759–769, 1986.

    Google Scholar 

  60. He, Z., J. Ritchie, J. S. Grashow, M. S. Sacks, and A. P. Yoganathan. In vitro dynamic strain behavior of the mitral valve posterior leaflet. J. Biomech. Eng. 127(3):504–511, 2005.

    Google Scholar 

  61. He, Z., M. S. Sacks, L. Baijens, S. Wanant, P. Shah, and A. P. Yoganathan. Effects of papillary muscle position on in-vitro dynamic strain on the porcine mitral valve. J. Heart Valve Dis. 12(4):488–494, 2003.

    Google Scholar 

  62. Ho, S. Y. Anatomy of the mitral valve. Heart 88(Suppl. iv):iv5–iv10, 2002.

    Google Scholar 

  63. Howard, I. C., E. A. Patterson, and A. Yoxall. On the opening mechanism of the aortic valve: some observations from simulations. J. Med. Eng. Technol. 27:259–266, 2003.

    Google Scholar 

  64. Huang, X., M. M. Black, I. C. Howard, and E. A. Patterson. A 2-dimensional finite-element analysis of a bioprosthetic heart-valve. J. Biomech. 23(8):753–762, 1990.

    Google Scholar 

  65. Iyengar, A. K. S., H. Sugimoto, D. B. Smith, and M. S. Sacks. Dynamic in vitro quantification of bioprosthetic heart valve leaflet motion using structured light projection. Ann. Biomed. Eng. 29:963–973, 2001.

    Google Scholar 

  66. Jermihov, P., J. Lu, R. C. Gorman, M. S. Sacks, and K. B. Chandran. Dynamic FE analysis of a simulated congenital bicuspid aortic valve (abstract). In: BMES Annual Conference, Pittsburgh, PA, 2009.

  67. Kafesjian, R., M. Howanec, G. Ward, L. Diep, L. Wagstaff, and R. Rhee. Cavitation damage of pyrolytic carbon in mechanical heart valves. J. Heart Valve Dis. 3(Supp 1):S2–S7, 1994.

    Google Scholar 

  68. Kaji, S., M. Nasu, A. Yamamuro, K. Tanabe, K. Nagai, T. Tani, K. Tamita, K. Shiratori, M. Kinoshita, M. Senda, Y. Okada, and S. Morioka. Annular geometry in patients with chronic ischemic mitral regurgitation: three-dimensional magnetic resonance imaging study. Circulation 112(Suppl. I):I-409–I-414, 2005.

    Google Scholar 

  69. Kaplan, S. R., G. Bashein, F. H. Sheehan, M. E. Legget, B. Munt, X. N. Li, M. Sivarajan, E. L. Bolson, M. Zeppa, M. Z. Arch, and R. W. Martin. Three-dimensional echocardiographic assessment of annular shape changes in the normal and regurgitant mitral valve. Am. Heart J. 139(3):378–387, 2000.

    Google Scholar 

  70. Kim, H., J. Lu, M. S. Sacks, and K. B. Chandran. Dynamic simulation pericardial bioprosthetic heart valve function. J. Biomech. Eng. 128(5):717–724, 2006.

    Google Scholar 

  71. Kim, H., J. Lu, M. S. Sacks, and K. B. Chandran. Dynamic simulation of bioprosthetic heart valves using a stress resultant shell model. Ann. Biomed. Eng. 36(2):262–275, 2008.

    Google Scholar 

  72. King, M. J., J. Corden, T. David, and J. Fisher. A three-dimensional, time-dependent analysis of flow through a bileaflet mechanical heart valve: comparison of experimental and numerical results. J. Biomech. 29(5):609–618, 1996.

    Google Scholar 

  73. King, M. J., T. David, and J. Fisher. An initial parametric study on fluid flow through bileaflet mechanical heart valves using computational fluid dynamics. J. Eng. Med. 208:63–71, 1994.

    Google Scholar 

  74. King, M. J., T. David, and J. Fisher. Three-dimensional study of the effect of two leaflet opening angles on the time-dependent flow through a bileaflet mechanical heart valve. Med. Eng. Phys. 19(3):235–241, 1997.

    Google Scholar 

  75. Kiris, C., D. Kwak, S. Rogers, and I.-D. Chang. Computational approach for probing the flow through artificial heart devices. J. Biomech. Eng. 119:452–460, 1997.

    Google Scholar 

  76. Klepetko, W., and A. Moritz. Leaflet fracture in Edwards-Duromedic bileaflet valves. J. Thorac. Cardiovasc. Surg. 97:90–94, 1989.

    Google Scholar 

  77. Krishnan, S., H. S. Udaykumar, J. S. Marshall, and K. B. Chandran. Two-dimensional dynamic simulation of platelet activation during mechanical heart valve closure. Ann. Biomed. Eng. 34(10):1519–1534, 2006.

    Google Scholar 

  78. Kunzelman, K. S., R. P. Cochran, C. Chuong, W. S. Ring, E. D. Verrier, and R. D. Eberhart. Finite element analysis of the mitral valve. J. Heart Valve Dis. 2(3):326–340, 1993.

    Google Scholar 

  79. Kunzelman, K. S., D. R. Einstein, and R. P. Cochran. Fluid–structure interaction models of the mitral valve: function in normal and pathological states. Philos. Trans. R. Soc. Lond. B Biol. Sci. 362(1484):1393–1406, 2007.

    Google Scholar 

  80. Kunzelman, K. S., D. W. Quick, and R. P. Cochran. Altered collagen concentration in mitral valve leaflets: biochemical and finite element analysis. Ann. Thorac. Surg. 66(6 Suppl):S198–S205, 1998.

    Google Scholar 

  81. Kunzelman, K. S., M. S. Reimink, and R. P. Cochran. Annular dilatation increases stress in the mitral valve and delays coaptation: a finite element computer model. Cardiovasc. Surg. 5:427–434, 1997.

    Google Scholar 

  82. Kunzelman, K. S., M. S. Reimink, and R. P. Cochran. Flexible versus rigid ring annuloplasty for mitral valve annular dilatation: a finite element model. J. Heart Valve Dis. 7(1):108–116, 1998.

    Google Scholar 

  83. Lee, C. S., and K. B. Chandran. Instantaneous back flow through peripheral clearance of Medtronic Hall tilting disc valve at the moment of closure. Ann. Biomed. Eng. 22(4):371–380, 1994.

    Google Scholar 

  84. Leo, H. L., H. Simon, J. Carberry, S.-C. Lee, and A. P. Yoganathan. A comparison of flow field structures of two tri-leaflet polymeric heart valves. Ann. Biomed. Eng. 33:429–443, 2005.

    Google Scholar 

  85. Li, J., X. Y. Luo, and Z. B. Kuang. A nonlinear anisotropic model for porcine aortic heart valves. J. Biomech. 34:1279–1289, 2001.

    Google Scholar 

  86. Liao, J., E. M. Joyce, J. Stella, and M. S. Sacks. Fiber recruitment models for heart valve tissues. Ann. Biomed. Eng., 2007 (submitted).

  87. Lim, W. L., Y. T. Chew, T. C. Chew, and H. T. Low. Pulsatile flow studies of a porcine bioprosthetic aortic valve in vitro: PIV measurements and shear-induced blood damage. J. Biomech. 34:1417–1427, 2001.

    Google Scholar 

  88. Lim, K. H., J. H. Yeo, and C. M. Duran. Three-dimensional asymmetrical modeling of the mitral valve: a finite element study with dynamic boundaries. J. Heart Valve Dis. 14(3):386–392, 2005.

    Google Scholar 

  89. Liu, J. S., P. C. Lu, and S. H. Chu. Turbulence characteristics downstream of bileaflet aortic valve prostheses. J. Biomech. Eng. 122:118–124, 2000.

    Google Scholar 

  90. Maisano, F., A. Redaelli, M. Soncini, E. Votta, L. Arcobasso, and O. Alfieri. An annular prostheses for the treatment of functional mitral regurgitation: finite element model analysis of a dog-bone shaped ring prosthesis. Ann. Thorac. Surg. 79:1268–1275, 2005.

    Google Scholar 

  91. Makhijani, V. B., H. Q. Yang, P. J. Dionne, and M. J. Thubrikar. Three-dimensional coupled fluid–structure simulation of pericardial bioprosthetic aortic valve function. ASAIO J. 43(5):M387–M392, 1997.

    Google Scholar 

  92. Manning, K. B., V. Kini, A. A. Fontaine, S. Deutsch, and J. M. Tarbell. Regurgitation flow field characteristics of the St. Jude bileaflet mechanical heart valve under physiological pulsatile flow using particle image velocimetry. Artif. Organs 27:840–846, 2003.

    Google Scholar 

  93. May-Newman, K., and F. C. Yin. Biaxial mechanical behavior of excised porcine mitral valve leaflets. Am. J. Physiol. Heart Circ. Physiol. 269:H1319–H1327, 1995.

    Google Scholar 

  94. May-Newman, K., and F. C. Yin. A constitutive law for mitral valve tissue. J. Biomech. Eng. 120(1):38–47, 1998.

    Google Scholar 

  95. Merryman, W. D., H. Y. Huang, F. J. Schoen, and M. S. Sacks. The effects of cellular contraction on aortic valve leaflet flexural stiffness. J. Biomech. 39:88–96, 2006.

    Google Scholar 

  96. Mirnajafi, A., J. Raymer, M. J. Scott, and M. S. Sacks. The effects of collagen fiber orientation on the flexural properties of pericardial heterograft biomaterials. J. Biomech. Eng. 26:795–804, 2005.

    Google Scholar 

  97. Morbiducci, U., R. Ponzini, M. Nobili, D. Massai, F. M. Montevecchi, D. Bluestein, and A. Redaelli. Blood damage safety of prosthetic heart valves. Shear-induced platelet activation and local flow dynamics: a fluid–structure interaction approach. J. Biomech. 42:1952–1960, 2009.

    Google Scholar 

  98. Morgan-Hughes, G. J., P. E. Owens, C. A. Roobottom, and A. J. Marshall. Three dimensional volume quantification of aortic valve calcification using multislice computed tomography. Heart 89(10):1191–1194, 2003.

    Google Scholar 

  99. Nesbitt, W. S., E. Westein, F. J. Tovar-Lopez, E. Tolouei, A. Mitchell, J. Fu, J. Carberry, A. Fouras, and S. P. Jackson. A shear gradient-dependent platelet aggregation mechanism drives thrombus formation. Nat. Med. 15:665–673, 2009.

    Google Scholar 

  100. Patterson, E. A., I. C. Howard, and M. A. Thornton. A comparative study of linear and nonlinear simulations of the leaflets in a bioprosthetic heart valve during the cardiac cycle. J. Med. Eng. Technol. 20(3):95–108, 1996.

    Google Scholar 

  101. Peskin, C. S. The fluid-dynamics of heart-valves—experimental, theoretical, and computational methods. Annu. Rev. Fluid Mech. 14:235–259, 1982.

    MathSciNet  Google Scholar 

  102. Peskin, C. S. The immersed boundary method. Acta Numer. 11:479–517, 2002.

    MATH  MathSciNet  Google Scholar 

  103. Peskin, C. S., and D. M. Mcqueen. A 3-dimensional computational method for blood-flow in the heart. 1. Immersed elastic fibers in a viscous incompressible fluid. J. Comput. Phys. 81(2):372–405, 1989.

    MATH  MathSciNet  Google Scholar 

  104. Peskin, C. S., and B. F. Printz. Improved volume conservation in the computation of flows with immersed elastic boundaries. J. Comput. Phys. 105:33–46, 1993.

    MATH  MathSciNet  Google Scholar 

  105. Pierrakos, O., P. P. Vlachos, and D. P. Telionis. Time-resolved DPIV analysis of vortex dynamics in a left ventricular model through bileaflet mechanical and porcine heart valve prostheses. J. Biomech. Eng. 126:714–726, 2004.

    Google Scholar 

  106. Robicsek, F., M. J. Thubrikar, J. W. Cook, and B. Fowler. The congenitally bicuspid aortic valve: How does it function? Why does it fail? Ann. Thorac. Surg. 77:177–185, 2004.

    Google Scholar 

  107. Rousseau, E. P., A. A. van Steenhoven, and J. D. Janssen. A mechanical analysis of the closed Hancock heart valve prosthesis. J. Biomech. 21(7):545–562, 1988.

    Google Scholar 

  108. Ryan, L. P., B. M. Jackson, Y. Enomoto, L. Parish, T. J. Plappert, M. G. St. John-Sutton, R. C. Gorman, and J. H. Gorman, III. Description of regional mitral annular nonplanarity in healthy human subjects: a novel methodology. J. Thorac. Cardiovasc. Surg. 134:644–648, 2007.

    Google Scholar 

  109. Ryan, L. P., B. M. Jackson, T. J. Eperjesi, T. J. Plappert, M. St John-Sutton, R. C. Gorman, and J. H. Gorman, III. A methodology for assessing human mitral leaflet curvature using real-time 3-dimensional echocardiography. J. Thorac. Cardiovasc. Surg. 136(3):726–734, 2008.

    Google Scholar 

  110. Sacks, M. S., Z. He, L. Baijens, S. Wanant, P. Shah, H. Sugimoto, and A. P. Yoganathan. Surface strains in the anterior leaflet of the functioning mitral valve. Ann. Biomed. Eng. 30(10):1281–1290, 2002.

    Google Scholar 

  111. Sacks, M. S., W. D. Merryman, and D. E. Schmidt. On the biomechanics of heart valve function. J. Biomech. 42:1804–1824, 2009.

    Google Scholar 

  112. Sacks, M. S., and F. J. Schoen. Collagen fiber disruption occurs independent of calcification in clinically explanted bioprosthetic heart valves. J. Biomed. Mater. Res. 62(3):359–371, 2002.

    Google Scholar 

  113. Sacks, M. S., D. B. Smith, and E. D. Hiester. A small angle light scattering device for planar connective tissue microstructural analysis. Ann. Biomed. Eng. 25(4):678–689, 1997.

    Google Scholar 

  114. Sacks, M. S., and A. P. Yoganathan. Heart valve function: a biomechanical perspective. Philos. Trans. R. Soc. Lond. B Biol. Sci. 362(1484):1369–1391, 2007.

    Google Scholar 

  115. Salgo, I. S., J. H. Gorman, III, R. C. Gorman, B. M. Jackson, F. W. Bowen, T. Plappert, M. G. St John Sutton, and L. H. Edmunds, Jr. Effect of annular shape on leaflet curvature in reducing mitral leaflet stress. Circulation 106(6):711–717, 2002.

    Google Scholar 

  116. Shi, Y., Y. Zhao, T. J. Yeo, and N. H. Hwang. Numerical simulation of opening process in a bileaflet mechanical heart valve under pulsatile flow condition. J. Heart Valve Dis. 12(2):245–255, 2003.

    Google Scholar 

  117. Shim, E., and K. Chang. Three-dimensional vortex flow past a tilting disc valve using a segregated finite element scheme. Comput. Fluid Dyn. J. 3:205–211, 1994.

    Google Scholar 

  118. Shim, E., and K. S. Chang. Numerical analysis of three-dimensional Bjork-Shiley valvular flow in the aorta. J. Biomech. Eng. 119:45, 1997.

    Google Scholar 

  119. Sorensen, E. N., G. W. Burgreen, W. R. Wagner, and J. F. Antaki. Computational simulation of platelet deposition and activation. II. Results for Poiseuille flow over collagen. Ann. Biomed. Eng. 27(4):449–458, 1999.

    Google Scholar 

  120. Sorensen, E. N., G. W. Burgreen, W. R. Wagner, and J. F. Antaki. Computational simulation of platelet deposition and activation. I. Model development and properties. Ann. Biomed. Eng. 27(4):436–448, 1999.

    Google Scholar 

  121. Sotiropoulos, F., and R. N. Borazjani. A review of state-of-the-art numerical methods for simulating flow through mechanical heart valves. Med. Biol. Eng. Comput. 47:245–256, 2009.

    Google Scholar 

  122. Sripathi, V. C., R. K. Kumar, and K. R. Balakrishnan. Further insights into normal aortic valve function: role of a compliant aortic root on leaflet opening and valve orifice area. Ann. Thorac. Surg. 77:844–851, 2004.

    Google Scholar 

  123. Stella, J., and M. S. Sacks. On the biaxial mechanical properties of the layers of the aortic valve leaflet. ASME J. Biomech. Eng. 129:757–766, 2007.

    Google Scholar 

  124. Sun, W., A. Abad, and M. S. Sacks. Simulated bioprosthetic heart valve deformation under quasi-static loading. J. Biomech. Eng. 127(6):905–914, 2005.

    Google Scholar 

  125. Sun, W., M. S. Sacks, T. L. Sellaro, W. S. Slaughter, and M. J. Scott. Biaxial mechanical response of bioprosthetic heart valve biomaterials to high in-plane shear. J. Biomech. Eng. 125(3):372–380, 2003.

    Google Scholar 

  126. Thubrikar, M. The Aortic Valve. Boca Raton, FL.: CRC Press, p. 221, 1990.

    Google Scholar 

  127. Thubrikar, M. J., J. D. Deck, J. Aouad, and S. P. Nolan. Role of mechanical stress in calcification of aortic bioprosthetic valves. J. Thorac. Cardiovasc. Surg. 86(1):115–125, 1983.

    Google Scholar 

  128. Thubrikar, M., J. R. Skinner, J. Aouad, B. A. Finkelmeier, and S. P. Nolan. Analysis of the design and dynamics of aortic bioprostheses in vivo. J. Thorac. Cardiovasc. Surg. 84(2):282–290, 1982.

    Google Scholar 

  129. Thubrikar, M., J. R. Skinner, R. T. Eppink, and S. P. Nolan. Stress analysis of porcine bioprosthetic heart valves in vivo. J. Biomed. Mater. Res. 16:811–826, 1982.

    Google Scholar 

  130. Turrito, V. T., A. M. Benis, and E. F. Leonard. Platelet diffusion in flowing blood. Ind. Eng. Chem. Fundam. 11:216–233, 1972.

    Google Scholar 

  131. van Loon, R., P. D. Anderson, and F. N. van de Vosse. A fluid–structure interaction method with solid-rigid contact for heart valve dynamics. J. Comput. Phys. 217:806–823, 2006.

    MATH  MathSciNet  Google Scholar 

  132. Verhey, J. F., N. S. Nathan, O. Rienhoff, R. Kikinis, F. Rakebrandt, and M. N. D’Ambra. Finite-element-method (FEM) model generation of time-resolved 3D echocardiographic geometry data for mitral-valve volumetry. Biomed. Eng. Online 5:17, 2006.

    Google Scholar 

  133. Vierendeels, J., K. Dumont, and P. Verdonck. A partitioned strongly coupled fluid–structure interaction method to model heart valve dynamics. J. Comput. Appl. Math. 215:602–609, 2008.

    MATH  MathSciNet  Google Scholar 

  134. Vigmostad, S. A sharp interface fluid–structure interaction for bioprosthetic heart valves. In: Biomedical Engineering. Iowa City: The University of Iowa, 2007, p. 169.

  135. Vigmostad, S. C., H. S. Udaykumar, J. Lu, and K. B. Chandran. Fluid–structure interaction methods in biological flows with special emphasis on heart valve dynamics. Commun. Numer. Methods Eng., 2010 (in press).

  136. Votta, E., F. Maisano, S. F. Bolling, O. Alfieri, F. Montevecchi, and A. Redaelli. The geoform disease-specific annuloplasty system: a finite element study. Ann. Thorac. Surg. 84:92–101, 2007.

    Google Scholar 

  137. Votta, E., F. Maisano, M. Soncini, A. Redaelli, F. M. Montevecchi, and O. Alfieri. 3-D computational analysis of the stress distribution on the leaflets after edge-to-edge repair of mitral regurgitation. J. Heart Valve Dis. 11(6):810–822, 2002.

    Google Scholar 

  138. Weinberg, E. J., and M. R. Kaazempur-Mofrad. Transient three-dimensional multi-scale simulations of the human aortic valve. Cardiovasc. Eng. 7:140–155, 2007.

    Google Scholar 

  139. Weinberg, E. J., and M. R. Kaazempur-Mofrad. A multiscale computational comparison of the bicuspid and tricuspid aortic valves in relation to calcific aortic stenosis. J. Biomech. 41:3482–3487, 2008.

    Google Scholar 

  140. Yeh, C., and E. C. Eckstein. Transient lateral transport of platelet-sized particles in flowing blood suspensions. Biophys. J. 66(5):1706–1716, 1994.

    Google Scholar 

  141. Yener, N., G. L. Oktar, D. Erer, M. M. Yardimci, and A. Yener. Bicuspid aortic valve. Ann. Thorac. Cardiovasc. Surg. 8(5):264–267, 2002.

    Google Scholar 

Download references

Acknowledgments

Partial support of this work through funding from NIH (HL 07184) and the Iowa Department of Economic Development is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishnan B. Chandran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chandran, K.B. Role of Computational Simulations in Heart Valve Dynamics and Design of Valvular Prostheses. Cardiovasc Eng Tech 1, 18–38 (2010). https://doi.org/10.1007/s13239-010-0002-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-010-0002-x

Keywords

Navigation