Skip to main content
Log in

Optical Second-Harmonic Generation of Terahertz Field from n-type InSb Semiconductors

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this paper, optical second-harmonic generation of terahertz field from n-type InSb semiconductors is investigated. The inter-band transitions generate electron-hole charge carriers in narrow bandgap semiconductors. The nonlinear interaction of terahertz fields with charge carriers within the absorption depth produces a nonlinear current at twice of the fundamental THz frequency, which generates second-harmonic terahertz photons. The conversion efficiency of second-harmonic generation is enhanced by the resonant density perturbations of the charge carriers. The results based on computational fluid dynamics show the generation of second-harmonic radiation spectrally centered at 2 THz frequency with 8 MeV energy. This mechanism for optical second-harmonic generation of terahertz may open new realms of semiconductor characterization, for which terahertz techniques are ideally suited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Hafez HA, Chai X, Ibrahim1 A, Mondal S, Ferachou D, Ropagnol X, Ozaki T (2016) Intense terahertz radiation and their applications. J Optics 18(9):093004

  2. Manikandan E, Princy SS, Sreeja BS, Radha S (2019) Structure metallic surface for terahertz plasmonics. Plasmonics 14:1311–1319

    Article  Google Scholar 

  3. Chesnitskiy AV, Gayduk AE, Prinz VY (2018) Transverse magneto-optical Kerr effect in strongly coupled plasmon gratings. Plasmonics 13:885–899

    Article  CAS  Google Scholar 

  4. Son JH, Oh SJ, Cheon H (2019) Potential clinical applications of terahertz radiation. J Appl Phys 125:190901

    Article  Google Scholar 

  5. Brucherseifer M, Nagel M, Bolivar PH, Kurz H, Bosserhoff A, Buttner R (2000) Label-free probing of the binding state of DNA by time-domain terahertz sensing. Appl Phys Lett 77:4049

    Article  CAS  Google Scholar 

  6. Auston DH, Johnson AM, Smith PR, Bean JC (1980) Picosecond optoelectronic detection, sampling, and correlation measurements in amorphous semiconductors. Appl Phys Lett 37:371

    Article  CAS  Google Scholar 

  7. Ferguson B, Zhang X (2002) Materials for terahertz science and technology. Nat Mater 1:26–33

    Article  CAS  Google Scholar 

  8. Combescot M, Bok J (1985) Electron-hole plasma generation and evolution in semiconductors. J Luminescence 30:1–17

    Article  CAS  Google Scholar 

  9. Guidotti D, Driscoll TA, Gerritsen HJ (1983) Second harmonic generation in centro-symmetric semiconductors. Solid State Commun 46(4):337–340

    Article  CAS  Google Scholar 

  10. Sodha MS, Ghatak AK, Tripathi VK (1976) Self focusing of laser beams in plasmas and semiconductors. Prog Opt 13:169–225

    Article  CAS  Google Scholar 

  11. Kant N, Gupta DN, Suk H (2012) Resonant third-harmonic generation of a short-pulse laser from electron-hole plasmas. Phys Plasmas 19:013101

    Article  Google Scholar 

  12. Sha W, Smirl AL, Tseng WF (1995) Coherent plasma oscillations in bulk semiconductors. Phys Rev Lett 74:4273

    Article  CAS  Google Scholar 

  13. Reklaitis A (2014) Theoretical analysis of conditions for observation of plasma oscillations in semiconductors from pulsed terahertz emission. J.Appl Phys 116(8):083107

    Article  Google Scholar 

  14. Gu P, Tani M, Kono S, Sakai K, Zhang XC (2002) Study of terahertz radiation from InAs and InSb. J Appl Phys 91(9):5533

    Article  CAS  Google Scholar 

  15. Hoffmann MC, Hebling J, Hwang HY, Yeh KL, Nelson KA (2009) Impact ionization in InSb probed by terahertz pump—terahertz probe spectroscopy. Phys Rev B 79:161201

    Article  Google Scholar 

  16. Vicario C, Monoszlai B, Hauri CP (2014) GV/M single-cycle terahertz fields from a laser-driven large-size partitioned organic crystal. Phys Rev Lett 112:213901

    Article  Google Scholar 

  17. Fiebig M, Pavlov VV, Pisarev RV (2005) Second-harmonic generation as a tool for studying electronic and magnetic structures of crystals: review. J Opt Soc Am B 22(1):96–118

    Article  CAS  Google Scholar 

  18. Khurgin JB (1995) Current induced second harmonic generation in semiconductors. Appl Phys Lett 67:1113

    Article  CAS  Google Scholar 

  19. Norkus R, Krotkus A (2018) Terahertz excitation spectra of InP single crystals. Semicond Sci Technol 33(7):075010

    Article  Google Scholar 

  20. Singh M, Gupta DN, Suk H (2015) Efficient second- and third-harmonic radiation generation from relativistic laser-plasma interactions. Phys Plasmas 22(6):063303

    Article  Google Scholar 

  21. Lange C, Maag T, Hohenleutner M, Baierl S, Schubert O, Edwards ERJ, Bougeard D, Woltersdorf G, Huber R (2014) Extremely nonperturbative nonlinearities in GaAs driven by atomically strong terahertz fields in gold metamaterials. Phys Rev Lett 113:227401

    Article  CAS  Google Scholar 

  22. Vicario C, Shalaby M, Hauri CP (2017) Subcycle extreme nonlinearities in GaP induced by an ultrastrong terahertz field. Phys Rev Lett 118

  23. Reid M, Cravetchi IV, Fedosejevs R (2005) Terahertz radiation and second-harmonic generation from inas: Bulk versus surface electric-field-induced contributions. Phys Rev B 72:035201

    Article  Google Scholar 

  24. Bereznaya SA, Korotchenko ZV, Redkin RA, Sarkisov SY, Brudnyi VN, Kosobutsky AV, Atuchin VV (2016) Terahertz generation from electron- and neutron-irradiated semiconductor crystal surfaces. Infrared Phys Tech 77:100–103

    Article  CAS  Google Scholar 

  25. Fujita K, Hayashi S, Ito A, Hitaka M, Dougakiuchi T (2019) Sub-terahertz and terahertz generation in long-wavelength quantum cascade lasers. Nanophotonics 8(12):2235–2241

    Article  Google Scholar 

  26. Christopher MC, Stirling TJ, Hristovski IR, Krupa JDA, Holzman JF (2016) Photoconductive terahertz generation from textured semiconductor materials. Sci Rep 6:23185

    Article  Google Scholar 

  27. Nissiyah GJ, Madhan MG (2019) A narrow spectrum terahertz emitter based on graphene photoconductive antenna. Plasmonics 14:2003–2011

    Article  CAS  Google Scholar 

  28. Guo Q, Zhang Y, Lyu Z, Zhang D, Huang Y, Meng C, Zhao Z, Yuan JM (2019) Terahertz emission and optical second harmonic generation from Si surfaces. Opt Mater Express 9(5):2776–2385

    Article  Google Scholar 

  29. Ovchinnikov AV, Chefonov OV, Mishina ED, Agranat MB (2019) Second harmonic generation in the bulk of silicon induced by an electric field of a high power terahertz pulse. Scientific Reports 9:9753

    Article  CAS  Google Scholar 

  30. Vaswani C, Mootz M, Sundahl C, Mudiyanselage DH, Kang JH, Yang X, Cheng D, Huang C, Kim RHJ, Liu Z, Luo L, Perakis IE, Eom CB, Wang J (2020) Terahertz second-harmonic generation from lightwave acceleration of symmetry-breaking nonlinear supercurrents. Phys Rev Lett 124:207003

    Article  CAS  Google Scholar 

  31. Kane EO (1957) Band structure of indium antimonide. J Phys Chem Solids 1(4):249–261

    Article  Google Scholar 

  32. Berezhiani VI, Mahajan SM (1994) Wake fields in semiconductor plasmas. Phys Rev Lett 73:1837

    Article  CAS  Google Scholar 

  33. Gupta DN, Suk H (2007) Enhanced focusing of laser beams in semiconductor plasmas. J Appl Phys 101(4):043109

    Article  Google Scholar 

  34. Ropagnol X, Kovacs Z, Gilicze B, Zhuldybina M, Blanchard F, Garcia-Rosas CM, Szatmári S, Foldes IB, Ozaki I (2019) Intense sub-terahertz radiation from wide-bandgap semiconductor based large-aperture photoconductive antennas pumped by UV lasers. New J Phys 21:113042

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Department of Science and Technology, Govt. of India under DST-RFBR joint proposal (INT/RUS/RFBR/394).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devki Nandan Gupta.

Ethics declarations

Conflict of Interest

The author declares that he has no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, D.N. Optical Second-Harmonic Generation of Terahertz Field from n-type InSb Semiconductors. Plasmonics 16, 419–424 (2021). https://doi.org/10.1007/s11468-020-01291-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01291-8

Keywords

Navigation