Skip to main content
Log in

Structure Metallic Surface for Terahertz Plasmonics

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Plasmonics is the field of study of the interaction between incident light and electrons in metals. It is used widely for developing nanophotonic devices. The structured metallic surface such as metamaterials can be used to produce spoof surface plasmons at any frequencies with the dimensions of unit cell less than the incident wavelength. Terahertz plasmonics is attracted to the field of research since it is used for sensing biological components even in a weak environment. The issue with planar metamaterials is a lower quality factor value. Several methods have been adopted for obtaining high Q-value in metamaterials. Among them, Fano- and Toroidal-based metamaterials offer high Q-factor and string localized field enhancement. This article discusses the importance and developments in the field of high-Q terahertz metamaterial for plasmonics applications. The nonlinear responses of terahertz metamaterial under high-intense THz pulses are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ghann W and Uddin J, (2017) “Terahertz (THz) spectroscopy : a cutting - edge terahertz (thz) spectroscopy : a cutting - edge technology technology,” p. 62805

  2. Rahm M, Nahata A, Akalin T, Beruete M, Sorolla M (2015) Focus on terahertz plasmonics. New J Phys 17(10):16–18

    Article  Google Scholar 

  3. Xu W, Xie L, Ying Y (2017) Mechanisms and applications of terahertz metamaterial sensing: a review. Nanoscale 9:13864–13878

    Article  CAS  PubMed  Google Scholar 

  4. Gupta M, Singh R (2016) Toroidal versus Fano resonances in high Q planar THz metamaterials. Adv Opt Mater 4(12):2119–2125

    Article  CAS  Google Scholar 

  5. Srivastava V (2018) Design of a microfabricated planar slow wave structure for a 0.22-THz TWT for communication, imaging and remote sensing. IETE Technical Review:1–9

  6. Sujit Chattopadhyay, Pradip Kumar Saha,“IYL 2015 –challenges for electrical engineers in nanophotonics", IETE Tech Rev, 2016

  7. Veselago VG (1968) The electrodynamics of substances with simultaneously negative values of ε and μ. In: vol. 509

    Google Scholar 

  8. Pendry JB, Holden AJ, Robbins DJ, and Stewart WJ, (1999) “Magnetism from conductors and enhanced nonlinear phenomena,” vol. 47(11) 2075–2084

  9. Withayachumnankul W, Abbott D (2009) Metamaterials in the terahertz regime. IEEE Photonics J 1(2):99–118

    Article  Google Scholar 

  10. RoyChoudhury S, Rawat V, Jalal AH, Kale SN, Bhansali S (2016) Recent advances in metamaterial split-ring-resonator circuits as biosensors and therapeutic agents. Biosens Bioelectron 86:595–608

    Article  CAS  PubMed  Google Scholar 

  11. Sihvola A (2007) Metamaterials in electromagnetics. Metamaterials 1:2–11

    Article  Google Scholar 

  12. Allen SJ and Bill M (1977) “Observation of the two-dimensional plasmon in silicon inversion layers,” vol. 3, no 17

  13. Chen H, Padilla WJ, Zide JMO, Gossard AC, Taylor AJ, and Averitt RD (2006) “Active terahertz metamaterial devices,” no. June 2016

    Article  CAS  PubMed  Google Scholar 

  14. Boardman AD (1982) Electromagnetic surface modes. Wiley, New York

    Google Scholar 

  15. Kushwaha MS (2001) “Plasmons and magnetoplasmons in semiconductor heterostructures”

    Article  CAS  Google Scholar 

  16. Wang X, Belyanin AA, Crooker SA, Mittleman DM, Kono J (2009) Interference-induced terahertz transparency in a semiconductor magneto-plasma. Nat Phys 6(2):126–130

    Article  Google Scholar 

  17. Rivas JG et al, “Low-frequency active surface plasmon optics on semiconductors,” vol. 082106, pp. 8–11, 2006

  18. Astley V, Mendis R, and Mittleman DM (2009) “Characterization of terahertz field confinement at the end of a tapered metal wire waveguide,” pp. 3–6

  19. Rusina A, Durach M, Nelson KA, and Stockman MI (2018) “Nanoconcentration of terahertz radiation in plasmonic waveguides,” pp. 1–8

  20. Zhan H, Mendis R, and Mittleman DM (2010) “Superfocusing terahertz waves below λ / 250 using plasmonic parallel-plate waveguides,” vol. 18, no. 9, pp. 9643–9650

  21. Garcı FJ, Maier SA, Andrews SR, and Martı L, (2006) “Terahertz surface plasmon-polariton propagation and focusing,” vol. 176805, no. October, pp. 1–4

  22. Yu N et al. (2010) “Terahertz plasmonics,” no. 3, pp. 52–58

  23. Azad AK, Hara JFO, Singh R, Chen H, Taylor AJ (2013) A review of terahertz plasmonics in subwavelength holes on conducting films. IEEE J Sel Top Quantum Electron 19(1):8400416

    Article  Google Scholar 

  24. Landy NI, Sajuyigbe S, Mock JJ, Smith DR, Padilla WJ (2008) Perfect metamaterial absorber. Phys Rev Lett 100:207402

    Article  CAS  PubMed  Google Scholar 

  25. Cheng YZ et al. (2014) “Ultrabroadband plasmonic absorber for terahertz waves,” pp. 1–5

  26. Withayachumnankul W, Shah CM, Fumeaux C, Benjamin S, Ung Y, Padilla WJ, Bhaskaran M, Abbott D, Sriram S (2014) Plasmonic resonance toward terahertz perfect absorbers. ACS Photonics 1:625–630

    Article  CAS  Google Scholar 

  27. Di Pietro P, Roy APP, Di FBEM, and Lupi FS (2014) “Resonating terahertz response of periodic arrays of subwavelength apertures,”

  28. Padhy P, Kumar P, Jha R (2016) Sensors and actuators B : chemical metal wire waveguide based all plasmonic refractive index sensor for terahertz frequencies. Sensors Actuators B Chem 225:115–120

    Article  CAS  Google Scholar 

  29. Yen TJ, Padilla WJ, Fang N, Vier DC, Smith DR, Pendry JB, Basov DN, Zhang X (2004) Terahertz magnetic response from artificial materials. Science (80- ) 303(5663):1494–1496

    Article  CAS  Google Scholar 

  30. Wu C, Khanikaev AB, Adato R, Arju N, Yanik AA, Altug H, Shvets G (2012) Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. Nat Mater 11(1):69–75

    Article  CAS  Google Scholar 

  31. Singh R, Al-Naib IAI, Koch M, Zhang W (2011) Sharp Fano resonances in THz metamaterials. Opt Express 19(7):6312–6319

    Article  PubMed  Google Scholar 

  32. Wu J et al (2016) Magnetic Fano resonances by design in symmetry broken THz meta-foils. Sci Rep 7(October):1–9, 2017

    CAS  Google Scholar 

  33. Gong C et al (2016) Broadband terahertz metamaterial absorber based on sectional asymmetric structures. Sci Rep 6(May):1–8

    Google Scholar 

  34. Tao H, Chieffo LR, Brenckle MA, Siebert SM, Liu M, Strikwerda AC, Fan K, Kaplan DL, Zhang X, Averitt RD, Omenetto FG (2011) Metamaterials on paper as a sensing platform. Adv Mater 23(28):3197–3201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fan Y, Wei Z, Li H, Chen H, Soukoulis CM (2013) Low-loss and high-Q planar metamaterial with toroidal moment. Phys Rev B - Condens Matter Mater Phys 87(11):1–5

    Article  Google Scholar 

  36. Li L et al (2016) Reconfigurable all-dielectric metamaterial frequency selective surface based on high-permittivity ceramics. Sci Rep 6(April):1–8

    Google Scholar 

  37. Zhao X et al, (2016) “Nonlinear terahertz metamaterial perfect absorbers using GaAs [ Invited ],” vol. 4, no. 3, pp. 16–21

  38. Seren HR et al, (2016) “Nonlinear terahertz devices utilizing semiconducting plasmonic metamaterials,” vol. 5, no. 5, pp. e16078–e16077

  39. Wu J, Zhang C, Liang L, Jin B, Kawayama I, Murakami H, Kang L, Xu W, Wang H, Chen J, Tonouchi M, Wu P (2014) Nonlinear terahertz superconducting plasmonics. In: vol. 162602, vol 105, p 162602

    Google Scholar 

  40. Keiser GR, Karl N, Liu PQ, Tulloss C, Chen HT, Taylor AJ, Brener I, Reno JL, Mittleman DM (2017) Nonlinear terahertz metamaterials with active electrical control. In: vol. 121101, vol 111, p 121101

    Google Scholar 

  41. Manikandan Esakkimuthu SB, Suseela R, Sankararajan A, Gupta GR, Prabhu S (2017) Laser patterning of thin film copper and ITO on flexible substrates for terahertz antenna applications. J Laser Micro Nanoeng 12(3):313–320

    Google Scholar 

  42. Manikandan E, Sreeja BS, Radha S, Bathe RN (2018) Direct laser fabrication of five-band symmetric terahertz metamaterial with Fano resonance. Mater Lett 229:320–323

    Article  CAS  Google Scholar 

  43. Manikandan E, Sreeja BS, Radha S, Duraiselvam M, Gupta A, Prabhu S (2018) Microfabrication of terahertz frequency-selective surface by short- and ultrashort laser ablation. Opt Eng 58(1):011007 1–011007 6

    Google Scholar 

  44. Manikandan E, Sreeja BS, Radha S, Bathe RN, Jain R (2018) A rapid fabrication of novel dual band terahertz metamaterial by femtosecond laser ablation. J Infrared, Millimeter, Terahertz Waves

    Article  Google Scholar 

  45. Esakkimuthu M, Suseela SB, Sankarrajan R, Gupta A, Prabhu S (2019) Microfabrication of low cost frequency selective surface for terahertz wave by laser ablation. Journal of Elec Materi 48:2423–2429. https://doi.org/10.1007/s11664-019-07008-w

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sasi Princy.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manikandan, E., Princy, S.S., Sreeja, B.S. et al. Structure Metallic Surface for Terahertz Plasmonics. Plasmonics 14, 1311–1319 (2019). https://doi.org/10.1007/s11468-019-00974-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-019-00974-1

Keywords

Navigation