Skip to main content
Log in

Screening beneficial rhizobacteria from Spartina maritima for phytoremediation of metal polluted salt marshes: comparison of gram-positive and gram-negative strains

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The aim of our work was the isolation and characterization of bacteria from the rhizosphere of Spartina maritima in the metal contaminated Odiel estuary (Huelva, SW Spain). From 25 strains, 84 % were identified as gram-positive, particularly Staphylococcus and Bacillus. Gram-negative bacteria were represented by Pantoea and Salmonella. Salt and heavy metal tolerance, metal bioabsorption, plant growth promoting (PGP) properties, and biofilm formation were investigated in the bacterial collection. Despite the higher abundance of gram-positive bacteria, gram-negative isolates displayed higher tolerance toward metal(loid)s (As, Cu, Zn, and Pb) and greater metal biosorption, as deduced from ICP-OES and SEM-EDX analyses. Besides, they exhibited better PGP properties, which were retained in the presence of metals and the ability to form biofilms. Gram-negative strains Pantoea agglomerans RSO6 and RSO7, together with gram-positive Bacillus aryabhattai RSO25, were selected for a bacterial consortium aimed to inoculate S. maritima plants in metal polluted estuaries for phytoremediation purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbas SH, Ismail IM, Mostafa TM, Sulaymon AH (2014) Biosorption of heavy metals: a review. J Chem Sci Technol 3: 74–102. https://www.researchgate.net/profile/Ibrahim_Ismail6/publication/268022877_Bisorption_of_heavy_metals_A_review/links/545f4a660cf295b56160e87b.pdf

  • Abdel-Baki AS, Dkhil MA, Al-Quraishy S (2011) Bioaccumulation of some heavy metals in tilapia fish relevant to their concentration in water and sediment of Wadi Hanifah, Saudi Arabia. Afr J Biotechnol 10: 2541–2547. http://www.ajol.info/index.php/ajb/article/view/93185

  • Ahemad M, Khan MS (2011) Functional aspects of plant growth promoting rhizobacteria: recent advancements. Insight Microbiol 1:39–54. doi:10.1016/j.jksus.2013.05.001

    Article  Google Scholar 

  • Amils R, Fernández-Remolar D, Parro V, Rodríguez-Manfredi JA, Timmis K, Oggerin M, Sánchez-Román M, López FJ, Fernández JP, Puente F, Gómez-Ortiz D, Briones C, Gómez F, Omoregie EO, García M, Rodríguez N, Sanz JL(2013) Iberian pyrite belt subsurface life (IPBSL), a drilling project of biohydrometallurgical interest. Adv Mater Res 825:15–18. doi:10.4028/www.scientific.net/AMR.825.15

  • Andrades-Moreno L, del Castillo I, Parra R, Doukkali B, Redondo-Gómez S, Pérez-Palacios P, Caviedes MA, Pajuelo E, Rodríguez-Llorente ID (2014) Prospecting metal-resistant plant-growth promoting rhizobacteria for rhizoremediation of metal contaminated estuaries using Spartina densiflora. Environ Sci Pollut Res 21:3713–3721. doi:10.1007/s11356-013-2364-8

    Article  CAS  Google Scholar 

  • Badri DV, Weir TL, Van der Lelie D, Vivanco JM (2009) Rhizosphere chemical dialogues: plant–microbe interactions. Curr Opin Biotechnol 20:642–650. doi:10.1016/j.copbio.2009.09.014

    Article  CAS  Google Scholar 

  • Bakker PA, Pieterse CM, van Loon LC (2007) Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology 97:239–243. doi:10.1094/PHYTO-97-2-0239

    Article  Google Scholar 

  • Barillot CDC, Sarde CO, Bert V, Tarnaud E, Cochet N (2013) A standardized method for the sampling of rhizosphere and rhizoplan soil bacteria associated to a herbaceous root system. Ann Microbiol 63:471–476. doi:10.1007/s13213-012-0491-y

    Article  CAS  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350. doi:10.1007/s11274-011-0979-9

    Article  CAS  Google Scholar 

  • Billi D, Potts M (2002) Life and death of dried prokaryotes. Res Microbiol 153:7–12. doi:10.1016/S0923-2508(01)01279-7

    Article  CAS  Google Scholar 

  • Burd G, Dixon DG, Glick BR (2000) Plant growth-promoting bacteria thatdecreases heavy metal toxicity in plants. Can J Microbiol 46:237–245. doi:10.1139/w99-143

    Article  CAS  Google Scholar 

  • Caçador I, Caetano M, Duarte B, Vale C (2009) Stock and losses of trace metals from salt marsh plants. Mar Environ Res 67:75–82. doi:10.1016/j.marenvres.2008.11.004

    Article  Google Scholar 

  • Cambrollé J, Redondo-Gómez S, Mateos-Naranjo E, Figueroa ME (2008) Comparison of the role of two Spartina species in terms of phytostabilization and bioaccumulation of metals in the estuarine sediment. Mar Pollut Bull 56:2037–2042. doi:10.1016/j.marpolbul.2008.08.008

    Article  Google Scholar 

  • Castagno LM, Estrella MJ, Sannazzaro AI, Grassano AE, Ruiz OA (2011) Phosphate-solubilization mechanism and in vitro plant growth promotion activity mediated by Pantoea eucalypti isolated from Lotus tenuis rhizosphere in the Salado River Basin (Argentina). J Appl Microbiol 110:1151–1165. doi:10.1111/j.1365-2672.2011.04968.x

    Article  CAS  Google Scholar 

  • Chun J, Lee JH, Jung Y, Kim M, Kim S, Kim BK, Lim YW (2007) EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261. doi:10.1099/ijs.0.64915-0

    Article  CAS  Google Scholar 

  • Couto T, Duarte B, Barroso D, Caçador I, Marques JC (2013) Halophytes as sources of metals in estuarine systems with low levels of contamination. Funct Plant Biol 40:931–939. doi:10.1071/FP12300

    CAS  Google Scholar 

  • Danhorn T, Fuqua C (2007) Biofilm formation by plant-associated bacteria. Annu Rev Microbiol 61:401–422. doi:10.1146/annurev.micro.61.080706.093316

    Article  CAS  Google Scholar 

  • Dary M, Chamber-Pérez MA, Palomares AJ, Pajuelo E (2010) In situ” phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. J Haz Mat 177:323–330. doi:10.1016/j.jhazmat.2009.12.035

    Article  CAS  Google Scholar 

  • Das, N, GeetanjaliBasak LV, Salam JA, Abigail MEA (2012) Application of biofilms on remediation of pollutants—an overview. J Microbiol Biotechnol Res 2: 783–790. doi: JMB-2012-2-5-783-790

  • De-Bashan LE, Hernandez JP, Bashan Y (2012) The potential contribution of plant growth promoting bacteria to reduce environmental degradation: a comprehensive evaluation. Appl Soil Ecol 61:171–189. doi:10.1016/j.apsoil.2011.09.003

    Article  Google Scholar 

  • Del Castillo I, Hernández P, Lafuente A, Rodríguez-Llorente ID, Caviedes MA, Pajuelo E (2012) Self-bioremediation of cork-processing wastewaters by (chloro) phenol-degrading bacteria immobilised onto residual cork particles. Water Res 46:1723–1734. doi:10.1016/j.watres.2011.12.038

    Article  Google Scholar 

  • Del Castillo I, Ojeda J, Megías E, Manyani H, López-Baena FJ, Pérez-Montaño F, Bellogín RA, Espuny MR, Cubo MT, Ollero FJ, Megías M (2015) Isolation of endophytic, epiphytic and rhizosphere plant growth-promoting bacteria from cultivated rice paddy soils of the Guadalquivir river marshes. Global Adv Res J Agric Sci 4:127–136. http://garj.org/garjas/3/2015/4/3/isolation-of-endophytic

  • Duarte B, Almeida PR, Caçador I (2009) Spartina maritima (cordgrass) rhizosediment extracellular enzymatic activity and its role in organic matter decomposition processes and metal speciation. Mar Ecol 30:65–73. doi:10.1111/j.1439-0485.2009.00326.x

    Article  Google Scholar 

  • El Aafi N, Brhada F, Dary M, Maltouf AF, Pajuelo E (2012) Rhizostabilization of metals in soils using Lupinus luteus inoculated with the metal resistant rhizobacterium Serratia sp. MSMC541. Int J Phytorem 14:261–274. doi:10.1080/15226514.2011.604693

    Article  Google Scholar 

  • Fernandes C, Fontainhas-Fernandes A, Peixoto F, Salgado MA (2007) Bioaccumulation of heavy metals in Liza saliens from the Esomriz-Paramos coastal lagoon, Portugal. Ecotoxicol Environ Saf 66:426–431. doi:10.1016/j.ecoenv.2006.02.007

    Article  CAS  Google Scholar 

  • Fernández-Caliani JC, Ruiz F, Galán E (1997) Clay mineral and heavy metal distributions in the lower estuary of Huelva and adjacent Atlantic shelf, SW Spain. Sci Total Environ 198:181–200. doi:10.1016/S0048-9697(97)05450-8

    Article  Google Scholar 

  • Galán E, Gómez-Ariza JL, González I, Fernández-Caliani JC, Morales E, Giráldez I (2003) Heavy metal partitioning in river sediments severely polluted by acid mine drainage in the Iberian Pyrite Belt. Appl Geochem 18:409–421. doi:10.1016/S0883-2927(02)00092-6

    Article  Google Scholar 

  • Gamalero E, Lingua G, Berta G, Glick BR (2009) Beneficial role of plant growth promoting bacteria and arbuscular mycorrhizal fungi on plant responses to heavy metal stress. Can J Microbiol 55:501–514. doi:10.1139/W09-010

    Article  CAS  Google Scholar 

  • Germaine KJ, McGuinness M, Dowling DN (2013) Improving phytoremediation through plant-associated bacteria. Mol Microbiol Ecol Rhizos 2:961–973. doi:10.1002/9781118297674.ch91

    Article  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica. doi:10.6064/2012/963401

    Google Scholar 

  • Gómez-Mercado F, Moral-Torres F, Jiménez-Luque E, de Haro-Lozano S (2012) Salinity tolerance of the hygrophilous plant species in the wetlands of the south of the Iberian Peninsula. Notulae Botanicae Horti Agrobotanici 40:18–28. http://www.notulaebotanicae.ro/index.php/nbha/article/view/7784

  • Harrison JJ, Ceri H, Turner RJ (2007) Multimetal resistance and tolerance in microbial biofilms. Nat Rev Microbiol 5:928–938. doi:10.1038/nrmicro1774

    Article  CAS  Google Scholar 

  • Hong Y, Liao D, Chen J, Khan S, Su J, Li H (2015) A comprehensive study of the impact of polycyclic aromatic hydrocarbons (PAHs) contamination on salt marsh plants Spartina alterniflora: implication for plant-microbe interactions in phytoremediation. Environ Sci Pollut Res 22:7071–7081. doi:10.1071/FP12300

    Article  CAS  Google Scholar 

  • Iriarte A, Bouza P, Simón M, Aguilar J, Díez M, Mertín F, Sierra M (2007) Contaminación por metales pesados y arsénico en los suelos de la Ría de Huelva, en: Bellinfante, N., Jordán, A. (Eds.), Tendencias Actuales de la Ciencia del Suelo. Universidad de Sevilla, pp. 148-154. ISBN 978-84-690-4129-1

  • Junta de Andalucía. Consejería de Medioambiente (1999) Los criterios y estándares para declarar un suelo contaminado en Andalucía y la metodología y técnicas de toma de muestra y análisis para su investigación. http://www.juntadeandalucia.es/medioambiente/web/Bloques_Tematicos/Estado_Y_Calidad_De_Los_Recursos_Naturales/Suelo/Criterios_pdf/Elementos.pdf

  • Krämer U (2010) Metal hyper-accumulation in plants. Ann Rev Plant Biol 61:517–534. doi:10.1146/annurev-arplant-042809-112156

    Article  Google Scholar 

  • Laghlimi M, Baghdad B, El Hadi H, Bouabdli A (2015) Phytoremediation mechanisms of heavy metal contaminated soils: a review. Open J Ecol 5:375. doi:10.4236/oje.2015.58031

    Article  Google Scholar 

  • Lugtenberg BJ, Dekkers L, Bloemberg GV (2001) Molecular determinants of rhizosphere colonization by Pseudomonas. Annu Rev Phytopathol 39:461–490. doi:10.1146/annurev.phyto.39.1.461

    Article  CAS  Google Scholar 

  • Lugtenberg BJ, Kamilova F (2009) Plant growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556. doi:10.1146/annurev.micro.62.081307.162918

    Article  CAS  Google Scholar 

  • Machuca A, Milagres AM (2003) Use of CAS-agar plate modified to study the effect of different variables on the siderophore production by Aspergillus. Lett Appl Microbiol 36:177–181. doi:10.1016/j.mimet.2007.03.023

    Article  CAS  Google Scholar 

  • Mendez MO, Maier RM (2008) Phytostabilisation of mine tailings in arid and semiarid environments: an emerging remediation technology. Environ Health Perspect 116:278–283. doi:10.1289/ehp.10608

    Article  CAS  Google Scholar 

  • Mesa J, Mateos-Naranjo E, Caviedes MA, Redondo-Gómez S, Pajuelo E, Rodríguez-Llorente ID (2015a) Scouting contaminated estuaries: heavy metal resistant and plant growth promoting rhizobacteria in the native metal rhizoaccumulator Spartina maritima. Mar Pollut Bull 90:150–159. doi:10.1016/j.marpolbul.2014.11.002

    Article  CAS  Google Scholar 

  • Mesa J, Rodríguez-Llorente ID, Pajuelo E, Piedras JMB, Caviedes MA, Redondo-Gómez S, Mateos-Naranjo E (2015c) Moving closer towards restoration of contaminated estuaries: Bioaugmentation with autochthonous rhizobacteria improves metal rhizoaccumulation in native Spartina maritima. J Hazard Mater 300:263–271. doi:10.1016/j.jhazmat.2015.07.006

    Article  CAS  Google Scholar 

  • Mesa J, Mateos-Naranjo E, Caviedes MA, Redondo-Gómez S, Pajuelo E, Rodríguez-Llorente ID (2015b) Endophytic cultivable bacteria of the metal bioaccumulator Spartina maritima improve plant growth but not metal uptake in polluted marshes soils. Front Microbiol 6. doi:10.3389/fmicb.2015.01450

  • Morillo J, Usero J, Rojas R (2008) Fractionation of metals and as in sediments from a biosphere reserve (Odiel salt marshes) affected by acidic mine drainage. Environ Monit Assess 139:329–337. doi:10.1007/s10661-007-9839-3

    Article  CAS  Google Scholar 

  • Nieto JM, Sarmiento AM, Olías M, Cánovas CR, Riba I, Kalman J, Delvalls TA (2007) Acid mine drainage pollution in the Tinto and Odiel rivers (Iberian Pyrite Belt, SW Spain) and bioavailability of the transported metals to the Huelva estuary. Environ Int 33:445–455. doi:10.1016/j.envint.2006.11.010

    Article  Google Scholar 

  • Pajuelo E, Rodríguez-Llorente ID, Lafuente A, Pérez-Palacios P, Doukkali B, Caviedes MA (2014) Engineering the rhizosphere for the purpose of bioremediation: an overview. CAB Reviews 9:1. doi:10.1079/PAVSNNR20149001

    Article  Google Scholar 

  • Parfentjev IA, Catelli AR (1964) Tolerance of Staphylococcus aureus to sodium chloride. J Bacteriol 88: 1–3. doi: http://jb.asm.org/content/88/1/1.full.pdf

  • Park JH, Bolan N, Megharaj M, Naidu R (2011) Isolation of phosphate solubilizing bacteria and their potential for lead immobilization in soil. J Hazard Mater 185:829–836. doi:10.1016/j.jhazmat.2010.09.095

    Article  CAS  Google Scholar 

  • Patten CL, Glick BR (2002) Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol 68:3795–3801. doi:10.1128/AEM.68.8.3795-3801.2002

    Article  CAS  Google Scholar 

  • Phieler R, Voit A, Kothe E (2013) Microbially supported phytoremediation of heavy metal contaminated soils: strategies and applications. Geobiotechnol 1:211–235. doi:10.1007/10_2013_200

    Google Scholar 

  • Pikovskaya RI (1948) Mobilization of phosphorous in soil connection with the vital activity of some microbial species. Microbiologiya 17:362–370

    CAS  Google Scholar 

  • Potts M (1994) Desiccation tolerance of prokaryotes. Microbiol Rev 58:755–805 PMID: 7854254

    CAS  Google Scholar 

  • Reboreda R, Caçador I (2008) Enzymatic activity in the rhizosphere of Spartina maritima: potential contribution for phytoremediation of metals. Mar Environ Res 65:77–84. doi:10.1016/j.marenvres.2007.09.001

    Article  CAS  Google Scholar 

  • Reboreda R, Caçador I, Pedro S, Almeida P (2008) Mobility of metals in salt marsh sediments colonised by Spartina maritima (Tagus estuary, Portugal). Hydrobiologia 606:129–137. doi:10.1007/s10750-008-9340-1

    Article  CAS  Google Scholar 

  • Redondo-Gómez S (2013) Bioaccumulation of heavy metals in Spartina. Funct Plant Biol 40:913–921. doi:10.1071/FP12271

    Google Scholar 

  • Redondo-Gómez S, Mateos-Naranjo E, Davy AJ, Fernández-Muñoz F, Castellanos ME, Luque T, Figueroa ME (2007) Growth and photosynthetic responses to salinity of the salt-marsh shrub Atriplex portulacoides. Ann Bot 100:555–563. doi:10.1093/aob/mcm119

    Article  Google Scholar 

  • Redondo-Gómez S, Andrades-Moreno L, Mateos-Naranjo E, Parra R, Valera-Burgos J, Aroca R (2011) Synergic effect of salinity and zinc stress on growth and photosynthetic responses of the cordgrass Spartina densiflora. J Exp Bot 62:5521–5530. doi:10.1093/jxb/err234

    Article  Google Scholar 

  • Rodríguez-Llorente ID, Dary M, Gamane D, El Hamdaoui A, Doukkali B, Lafuente A, Delgadillo J, Caviedes MA, Pajuelo E (2010) Cadmium biosorption properties of the metal resistant Ochrobactrum cytisi Azn6.2. Eng Life Sci 10:49–56. doi:10.1002/elsc.200900060

    Article  Google Scholar 

  • Ruiz F (2001) Trace metals in estuarine sediments of southwestern Spain. Mar Pollut Bull 42:481–489. doi:10.1016/S0025-326X(00)00192-2

    Article  Google Scholar 

  • Sáinz A, Ruiz F (2006) Influence of the very polluted inputs of the Tinto–Odiel system on the adjacent littoral sediments of south-western Spain: a statistical approach. Chemosphere 62:1612–1622. doi:10.1016/j.chemosphere.2005.06.045

    Article  Google Scholar 

  • Salt DE, Blaylock M, Kumar N, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13:468–474 PMID: 9634787

    Article  CAS  Google Scholar 

  • Santoyo G, Orozco-Mosqueda MDC, Govindappa M (2012) Mechanisms of biocontrol and plant growth-promoting activity in soil bacterial species of Bacillus and Pseudomonas: a review. Biocontrol Sci Tech 22:855–872. doi:10.1080/09583157.2012.694413

    Article  Google Scholar 

  • Sarma BK, Yadav SK, Singh DP, Singh HB (2012) Rhizobacteria mediated induced systemic tolerance in plants: prospects for abiotic stress management, in. In: Maheshwari DK (ed) Bacteria in agrobiology: stress management. Springer, Berlin Heidelberg., New York, pp. 225–238. doi:10.1007/978-3-642-23465-1_11

    Chapter  Google Scholar 

  • Sergeeva E, Hirkala DL, Nelson LM (2007) Production of indole-3-acetic acid, aromatic amino acid aminotransferase activities and plant growth promotion by Pantoea agglomerans rhizosphere isolates. Plant Soil 297:1–13. doi:10.1007/s11104-007-9314-5

    Article  CAS  Google Scholar 

  • Shabala S (2013) Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops. Ann Bot 112:1209–1221. doi:10.1093/aob/mct205.

    Article  Google Scholar 

  • Shaharoona B, Arshad M, Zahir ZA, Khalid A (2006) Performance of Pseudomonas spp. containing ACC-deaminase for improving growth and yield of maize (Zea mays L.) in the presence of nitrogenous fertilizer. Soil Biol Biochem 38:2971–2975. doi:10.1016/j.soilbio.2006.03.024

    Article  CAS  Google Scholar 

  • Sharma A, Singh P, Kumar S, Kashyap PL, Srivastava AK, Chakdar H, Sharma AK (2015) Deciphering diversity of salt-tolerant bacilli from saline soils of eastern Indo-gangetic plains of India. Geomicrobiol J 32:170–180. doi:10.1080/01490451.2014.938205

    Article  CAS  Google Scholar 

  • Soliman NF, Nasr SM, Okbah AA (2015) Potential ecological risk of heavy metals in sediments from the Mediterranean coast, Egypt. J Environ Health Sci Eng 13:70. doi:10.1186/s40201-015-0223-x

    Article  Google Scholar 

  • Spaepen S, Vanderleyden J (2011) Auxin and plant-microbe interactions. Cold Spring Harb Perspect Biol 3:a001438. doi:10.1101/cshperspect.a001438

    Article  Google Scholar 

  • Su J, Ouyang W, Hong Y, Liao D, Khan S, Li H (2016) Responses of endophytic and rhizospheric bacterial communities of salt marsh plant (Spartina alterniflora) to polycyclic aromatic hydrocarbons contamination. J Soils Sediments 16:707–715. doi:10.1007/s11368-015-1217-0

    Article  CAS  Google Scholar 

  • Tak HI, Ahmad F, Babalola OO (2013) Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals. Rev Environ Contam Toxicol 223:33–52. doi:10.1007/978-1-4614-5577-6

    CAS  Google Scholar 

  • Tangahu BV, Sheikh Abdullah SR, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Engineer 2011. doi: 10.1155/2011/939161

  • Thompson IP, Bayley MJ, Fenlon JS, Fermor TR, Lilley AK, Lynch JM, McCormack PJ, Purdy KJ, McQuilken MP, Rainey PB, Whipps JM (1993) Quantitative and qualitative seasonal changes in the microbial community from the phyllosphere of sugar beet (Beta vulgaris). Plant Soil 150:177–191. doi:10.1007/BF00013015

    Article  Google Scholar 

  • Vamerali T, Bandiera M, Mosca G (2010) Field crops for phytoremediation of metal contaminated land. A review. Environ Chem Lett 8:1–17. doi:10.1007/s10311-009-0268-0

    Article  CAS  Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776. doi:10.1111/j.1469-8137.2008.02748.x

    Article  CAS  Google Scholar 

  • Verhagen BW, Glazebrook J, Zhu T, Chang HS, Van Loon LC, Pieterse CM (2004) The transcriptome of rhizobacteria-induced systemic resistance in Arabidopsis. Mol Plant-Microbe Interact 17:895–908. doi:10.1094/MPMI.2004.17.8.895

    Article  CAS  Google Scholar 

  • Vurukonda SSKP, Vardharajula S, Shrivastava M, SkZ A (2016) Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol Res 184:13–24. doi:10.1016/j.micres.2015.12.003s

    Article  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173: 697–703. http://jb.asm.org/content/173/2/697.short

  • Xia P, Meng X, Yin P, Cao Z, Wang X (2011) Eighty-year sedimentary record of heavy metal inputs in the intertidal sediments from the Nanliu River estuary, Beibu Gulf of South China Sea. Environ Pollut 159: 92–99. http://www.sciencedirect.com/science/article/pii/S0269749110004197

  • Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4. doi:10.1016/jtplants.2008.10.004

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been financed by Junta de Andalucía (Proyecto de Excelencia P11-RNM-7274). K. Paredes-Páliz has been supported by a pre-doctoral grant (SENESCYT, Ecuador). The students Rafael Gil-Baena, Yoely Lantigua, and Reyes Serrano are acknowledged for their collaboration in the isolation and preliminary characterization of the strains. Thanks are given to the Microscopy Service of the CITIUS (University of Sevilla, Spain) and particularly to Cristina Vaquero for her help in the preparation and analysis of samples by SEM-EDX.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eloísa Pajuelo.

Additional information

Responsible editor: Robert Duran

Electronic supplementary material

ESM 1

(PPT 813 kb)

ESM 2

(PPT 903 kb)

ESM 3

(PPT 97 kb)

ESM 4

(DOCX 16 kb)

ESM 5

(DOC 106 kb)

ESM 6

(DOC 64 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paredes-Páliz, K.I., Caviedes, M.A., Doukkali, B. et al. Screening beneficial rhizobacteria from Spartina maritima for phytoremediation of metal polluted salt marshes: comparison of gram-positive and gram-negative strains. Environ Sci Pollut Res 23, 19825–19837 (2016). https://doi.org/10.1007/s11356-016-7184-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7184-1

Keywords

Navigation