Skip to main content

Advertisement

Log in

A comprehensive study of the impact of polycyclic aromatic hydrocarbons (PAHs) contamination on salt marsh plants Spartina alterniflora: implication for plant-microbe interactions in phytoremediation

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

These pot experiments aimed to investigate the effects of polycyclic aromatic hydrocarbons (PAHs) on plant uptake, rhizophere, endophytic bacteria, and phytoremediation potentials of contaminated sediments. Salt marsh plant Spartina alterniflora was selected and cultivated in phenanthrene (PHE)- and pyrene (PYR)-contaminated sediments (for 70 days). The results indicated that the amount of PHE removed from the sediments ranged from 13 to 36 %, while PYR ranged from 11 to 30 %. In rhizophere sediment, dehydrogenase activities were significantly (P < 0.05) enhanced by higher concentration of PHE treatments, while polyphenol oxidase activities were prohibited more than 10 % in non-rhizophere sediment. Compared with the control, PHE treatments had also significantly (P < 0.05) lower total microbial biomass; especially for gram-negative bacteria, this decrease was more than 24 %. However, the PYR treatments had little effect on the dehydrogenase, polyphenol oxidase, and total phospholipid fatty acid analysis (PLFA) biomass. The greatest abundance of PAH-ring hydroxylating dioxygenases isolated from gram-negative bacteria (PAH-RHDα-GN) of rhizoplane and endophyte in roots were found at high concentration of PHE treatments and increased by more than 100- and 3-fold, respectively. These results suggested that PAH pollution would result in the comprehensive effect on S. alterniflora, whose endophytic bacteria might play important roles in the phytoremediation potential of PAH-contaminated sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andreolli M, Lampis S, Poli M, Gullner G, Biro B, Vallini G (2013) Endophytic Burkholderia fungorum DBT1 can improve phytoremediation efficiency of polycyclic aromatic hydrocarbons. Chemosphere 92:688–694

    Article  CAS  Google Scholar 

  • Barac T, Taghavi S, Borremans B, Provoost A, Oeyen L, Colpaert JV, Vangronsveld J, van der Lelie D (2004) Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nat Biotechnol 22:583–588

    Article  CAS  Google Scholar 

  • Cebron A, Norini MP, Beguiristain T, Leyval C (2008) Real-Time PCR quantification of PAH-ring hydroxylating dioxygenase (PAH-RHD alpha) genes from Gram positive and Gram negative bacteria in soil and sediment samples. J Microbiol Method 73:148–159

    Article  CAS  Google Scholar 

  • Cebron A, Beguiristain T, Faure P, Norini MP, Masfaraud JF, Leyval C (2009) Influence of vegetation on the in situ bacterial community and polycyclic aromatic hydrocarbon (PAH) degraders in aged PAH-contaminated or thermal-desorption-treated soil. Appl Environ Microbiol 75:6322–6330

    Article  CAS  Google Scholar 

  • Cebron A, Louvel B, Faure P, France-Lanord C, Chen Y, Murrell JC, Leyval C (2011) Root exudates modify bacterial diversity of phenanthrene degraders in PAH-polluted soil but not phenanthrene degradation rates. Environ Microbiol 13:722–736

    Article  CAS  Google Scholar 

  • Cheema SA, Khan MI, Tang XJ, Zhang CK, Shen CF, Malik Z, Ali S, Yang JJ, Shen KL, Chen XC, Chen YX (2009) Enhancement of phenanthrene and pyrene degradation in rhizosphere of tall fescue (Festuca arundinacea). J Hazard Mater 166:1226–1231

    Article  CAS  Google Scholar 

  • Chiou CT, Sheng GY, Manes M (2001) A partition-limited model for the plant uptake of organic contaminants from soil and water. Environ Sci Technol 35:1437–1444

    Article  CAS  Google Scholar 

  • Ding GC, Heuer H, Zuhlke S, Spiteller M, Pronk GJ, Heister K, Kogel-Knabner I, Smalla K (2010) Soil type-dependent responses to phenanthrene as revealed by determining the diversity and abundance of polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenase genes by using a novel PCR detection system. Appl Environ Microbiol 76:4765–4771

    Article  CAS  Google Scholar 

  • Fleming MA, Kukor JJ, Haggblom MM (2003) Plant-mediated effects on polycyclic aromatic hydrocarbon (PAH) degradation by bacteria in the rhizosphere of the salt marsh grasses Spartina alterniflora and Phragmites australis. Abstracts of the General Meeting of the American Society for Microbiology 103, Q-030

  • Frostegard A, Tunlid A, Baath E (2011) Use and misuse of PLFA measurements in soils. Soil Biol Biochem 43:1621–1625

    Article  CAS  Google Scholar 

  • Gao YZ, Zhu LZ (2004) Plant uptake, accumulation and translocation of phenanthrene and pyrene in soils. Chemosphere 55:1169–1178

    Article  CAS  Google Scholar 

  • Germaine KJ, Keogh E, Ryan D, Dowling DN (2009) Bacterial endophyte-mediated naphthalene phytoprotection and phytoremediation. FEMS Microbiol Ecol 296:226–234

    Article  CAS  Google Scholar 

  • Gu Y, Wang P, Kong CH (2009) Urease, invertase, dehydrogenase and polyphenoloxidase activities in paddy soil influenced by allelopathic rice variety. Eur J Soil Biol 45:436–441

    Article  CAS  Google Scholar 

  • Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169:1–15

    Article  CAS  Google Scholar 

  • Hensel MJS, Silliman BR (2013) Consumer diversity across kingdoms supports multiple functions in a coastal ecosystem. Proc Natl Acad Sci USA110, 20621–20626

  • Hong YW, Yuan DX, Lin QM, Yang TL (2008) Accumulation and biodegradation of phenanthrene and fluoranthene by the algae enriched from a mangrove aquatic ecosystem. Mar Poll Bull 56:1400–1405

    Article  CAS  Google Scholar 

  • Hong YW, Yuan DX, Liao D, Liu BM (2009) Accumulation of polycyclic aromatic hydrocarbons from contaminated soil by Kandelia candel. Acta Oceanol Sin 28:24–29

    CAS  Google Scholar 

  • Hong YW, Yu S, Yu GB, Liu Y, Li GL, Wang M (2012) Impacts of urbanization on surface sediment quality evidence from polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) contaminations in the Grand Canal of China. Environ Sci Pollut Res 19:1352–1363

    Article  CAS  Google Scholar 

  • Hu NJ, Shi XF, Huang P, Mao JA, Liu JH, Liu Y, Ma DY (2011) Polycyclic aromatic hydrocarbons (PAHs) in surface sediments of Liaodong Bay, Bohai Sea, China. Environ Sci Pollut Res 18:163–172

    Article  CAS  Google Scholar 

  • Isbell F, Reich PB, Tilman D, Hobbie SE, Polasky S, Binder S (2013) Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity. Proc Natl Acad Sci USA110, 11911–11916

  • Jennerjahn TC (2012) Biogeochemical response of tropical coastal systems to present and past environmental change. Earth-Sci Rev 114:19–41

    Article  CAS  Google Scholar 

  • Joynt J, Bischoff M, Turco R, Konopka A (2006) Microbial community analysis of soils contaminated with lead, chromium and petroleum hydrocarbons. Microb Ecol 51:209–219

    Article  CAS  Google Scholar 

  • Kaur A, Chaudhary A, Kaur A, Choudhary R, Kaushik R (2005) Phospholipid fatty acid—a bioindicator of environment monitoring and assessment in soil ecosystem. Curr Sci 89:1103–1112

    CAS  Google Scholar 

  • Khan S, Hesham AE, Qing G, Shuang L, He JZ (2009) Biodegradation of pyrene and catabolic genes in contaminated soils cultivated with Lolium multiflorum L. J Soil Sediment 9:482–491

    Article  CAS  Google Scholar 

  • Khan S, Rehman S, Cao Q, Jehan N, Shah MT (2011) Uptake and translocation of lead and pyrene by ryegrass cultivated in aged spiked soil. Int J Environ Pollut 45:110–122

    Article  CAS  Google Scholar 

  • Khan S, Afzal M, Iqbal S, Khan QM (2013) Plant-bacteria partnerships for the remediation of hydrocarbon contaminated soils. Chemosphere 90:1317–1332

    Article  CAS  Google Scholar 

  • Kipopoulou AM, Manoli E, Samara C (1999) Bioconcentration of polycyclic aromatic hydrocarbons in vegetables grown in an industrial area. Environ Pollut 106:369–380

    Article  CAS  Google Scholar 

  • Langworthy DE, Stapleton RD, Sayler GS, Findlay RH (1998) Genotypic and phenotypic responses of a riverine microbial community to polycyclic aromatic hydrocarbon contamination. Appl Environ Microbiol 64:3422–3428

    CAS  Google Scholar 

  • Langworthy DE, Stapleton RD, Sayler GS, Findlay RH (2002) Lipid analysis of the response of a sedimentary microbial community to polycyclic aromatic hydrocarbons. Microb Ecol 43:189–198

    Article  CAS  Google Scholar 

  • Launen LA, Dutta J, Turpeinen R, Eastep ME, Dorn R, Buggs VH, Leonard JW, Haggblom MM (2008) Characterization of the indigenous PAH-degrading bacteria of Spartina dominated salt marshes in the New York/New Jersey Harbor. Biodegradation 19:347–363

    Article  CAS  Google Scholar 

  • Lee SH, Lee WS, Lee CH, Kim JG (2008) Degradation of phenanthrene and pyrene in rhizosphere of grasses and legumes. J Hazard Mater 153:892–898

    Article  CAS  Google Scholar 

  • Liu R, Xiao N, Wei SH, Zhao LX, An J (2014) Rhizosphere effects of PAH-contaminated soil phytoremediation using a special plant named Fire Phoenix. Sci Total Environ 473:350–358

    Article  Google Scholar 

  • Martinez ML, Intralawan A, Vazquez G, Perez-Maqueo O, Sutton P, Landgrave R (2007) The coasts of our world ecological, economic and social importance. Ecol Econ 63:254–272

    Article  Google Scholar 

  • Mendes R, Pizzirani-Kleiner AA, Araujo WL, Raaijmakers JM (2007) Diversity of cultivated endophytic bacteria from sugarcane genetic and biochemical characterization of Burkholderia cepacia complex isolates. Appl Environ Microbiol 73:7259–7267

    Article  CAS  Google Scholar 

  • Meng LA, Zhu YG (2011) Pyrene biodegradation in an industrial soil exposed to simulated rhizodeposition: how does it affect functional microbial abundance? Environ Sci Technol 45:1579–1585

    Article  CAS  Google Scholar 

  • Merchan CG, Perrodin Y, Barraud S, Sebastian C, Becouze-Lareure C, Bazin C, Kouyi GL (2014) Spatial variability of sediment ecotoxicity in a large storm water detention basin. Environ Sci Pollut Res 21:5357–5366

    Article  CAS  Google Scholar 

  • Oleszczuk P, Baran S (2005) Polycyclic aromatic hydrocarbons content in shoots and leaves of willow (Salix viminalis) cultivated on the sewage sludge-amended soil. Water Air Soil Pollut 168:91–111

    Article  CAS  Google Scholar 

  • Oliveira V, Gomes NCM, Almeida A, Silva AMS, Simoes MMQ, Smalla K, Cunha A (2014) Hydrocarbon contamination and plant species determine the phylogenetic and functional diversity of endophytic degrading bacteria. Mol Ecol 23:1392–1404

    Article  CAS  Google Scholar 

  • Perucci P, Casucci C, Dumontet S (2000) An improved method to evaluate the o-diphenol oxidase activity of soil. Soil Biol Biochem 32:1927–1933

    Article  CAS  Google Scholar 

  • Phillips LA, Germida JJ, Farrell RE, Greer CW (2008) Hydrocarbon degradation potential and activity of endophytic bacteria associated with prairie plants. Soil Biol Biochem 40:3054–3064

    Article  CAS  Google Scholar 

  • Pratt B, Riesen R, Johnston CG (2012) PLFA analyses of microbial communities associated with PAH-contaminated riverbank sediment. Microb Ecol 64:680–691

    Article  CAS  Google Scholar 

  • Qiu JN (2011) China faces up to ‘terrible’ state of its ecosystems. Nature 471:19–19

    Article  CAS  Google Scholar 

  • Raza M, Zakaria MP, Hashim NR, Yim UH, Kannan N, Ha SY (2013) Composition and source identification of polycyclic aromatic hydrocarbons in mangrove sediments of Peninsular Malaysia indication of anthropogenic input. Environ Earth Sc 70:2425–2436

    Article  CAS  Google Scholar 

  • Ringelberg DB, Talley JW, Perkins EJ, Tucker SG, Luthy RG, Bouwer EJ, Fredrickson HL (2001) Succession of phenotypic, genotypic, and metabolic community characteristics during in vitro bioslurry treatment of polycyclic aromatic hydrocarbon-contaminated sediments. Appl Environ Microbiol 67:1542–1550

    Article  CAS  Google Scholar 

  • Semedo M, Oliveira M, Gomes F, Reis-Henriques MA, Delerue-Matos C, Morais S, Ferreira M (2014) Seasonal patterns of polycyclic aromatic hydrocarbons in digestive gland and arm of octopus (Octopus vulgaris) from the Northwest Atlantic. Sci Total Environ 481:488–497

    Article  CAS  Google Scholar 

  • Singer AC, Crowley DE, Thompson IP (2003) Secondary plant metabolites in phytoremediation and biotransformation. Trends Biotechnol 21:123–130

    Article  CAS  Google Scholar 

  • Singleton DR, Hu J, Aitken MD (2012) Heterologous expression of polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenase genes from a novel pyrene-degrading betaproteobacterium. Appl Environ Microbiol 78:3552–3559

    Article  CAS  Google Scholar 

  • Slater GF, Cowie BR, Harper N, Droppo IG (2008) Variation in PAH inputs and microbial community in surface sediments of Hamilton Harbour: implications to remediation and monitoring. Environ Pollut 153:60–70

    Article  CAS  Google Scholar 

  • Soleimani M, Afyuni M, Hajabbasi MA, Nourbakhsh F, Sabzalian MR, Christensen JH (2010) Phytoremediation of an aged petroleum contaminated soil using endophyte infected and non-infected grasses. Chemosphere 81:1084–1090

    Article  CAS  Google Scholar 

  • Su YH, Zhu YG (2008) Uptake of selected PAHs from contaminated soils by rice seedlings (Oryza sativa) and influence of rhizosphere on PAH distribution. Environ Pollut 155:359–365

    Article  CAS  Google Scholar 

  • Taghavi S, Barac T, Greenberg B, Borremans B, Vangronsveld J, van der Lelie D (2005) Horizontal gene transfer to endogenous endophytic bacteria from poplar improves phytoremediation of toluene. Appl Environ Microbiol 71:8500–8505

    Article  CAS  Google Scholar 

  • Wan SW, Qin P, Liu JN, Zhou HX (2009) The positive and negative effects of exotic Spartina alterniflora in China. Ecol Eng 35:444–452

    Article  Google Scholar 

  • Watts AW, Ballestero TP, Gardner KH (2006) Uptake of polycyclic aromatic hydrocarbons (PAHs) in salt marsh plants Spartina alterniflora grown in contaminated sediments. Chemosphere 62:1253–1260

    Article  Google Scholar 

  • Weyens N, Truyens S, Saenen E, Boulet J, Dupae J, Taghavi S, van der Lelie D, Carleer R, Vangronsveld J (2011) Endophytes and their potential to deal with co-contamination of organic contaminants (toluene) and toxic metals (nickel) during phytoremediation. Int J Phytoremediation 13:244–255

    Article  CAS  Google Scholar 

  • Yergeau E, Sanschagrin S, Maynard C, St-Arnaud M, Greer CW (2014) Microbial expression profiles in the rhizosphere of willows depend on soil contamination. ISME J 8:344–358

    Article  CAS  Google Scholar 

  • Yousaf S, Andria V, Reichenauer TG, Smalla K, Sessitsch A (2010) Phylogenetic and functional diversity of alkane degrading bacteria associated with Italian ryegrass (Lolium multiflorum) and birdsfoot trefoil (Lotus corniculatus) in a petroleum oil-contaminated environment. J Hazard Mater 184:523–532

    Article  CAS  Google Scholar 

  • Yu S, Ehrenfeld JG (2010) Relationships among plants, soils and microbial communities along a hydrological gradient in the New Jersey Pinelands, USA. Ann Bot-London 105:185–196

    Article  Google Scholar 

  • Zelles L (1999) Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil a review. Biol Fert Soil 29:111–129

    Article  CAS  Google Scholar 

  • Zhang P, Song JM, Yuan HM (2009) Persistent organic pollutant residues in the sediments and mollusks from the Bohai Sea coastal areas, North China: an overview. Environ Int 35:632–646

    Article  CAS  Google Scholar 

  • Zhang QF, Peng JJ, Chen Q, Yang XR, Hong YW, Su JQ (2013) Abundance and composition of denitrifiers in response to Spartina alterniflora invasion in estuarine sediment. Can J Microbiol 59:825–836

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the anonymous reviewers for their helpful comments and suggestions. This research was funded by the National Natural Science Foundation of China (No.41006064), the Fujian Youth Science Foundation (No.2012 J05081), the Natural Science Foundation of Ningbo City (NO. 2014A610100) and the State Scholarships Foundation (No.201304910080). We also thank Prof. Shen Yu and Dr. Wenjian Lao comments, Jing Ding and Dr. Bo Xu for seedlings culture, Dr. Yongshan Chen, Jinbo Gao and Jun Ma for sediment sampling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youwei Hong.

Additional information

Responsible editor: Cinta Porte

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, Y., Liao, D., Chen, J. et al. A comprehensive study of the impact of polycyclic aromatic hydrocarbons (PAHs) contamination on salt marsh plants Spartina alterniflora: implication for plant-microbe interactions in phytoremediation. Environ Sci Pollut Res 22, 7071–7081 (2015). https://doi.org/10.1007/s11356-014-3912-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3912-6

Keywords

Navigation