Skip to main content
Log in

Microbial glucoamylases: structural and functional properties and biotechnological uses

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Glucoamylases (GAs) are one of the principal groups of enzymes involved in starch hydrolysis and belong to the glycosylhydrolase family. They are classified as exo-amylases due to their ability to hydrolyze α-1,4 glycosidic bonds from the non-reducing end of starch, maltooligosaccharides, and related substrates, releasing β-D-glucose. Structurally, GAs possess a characteristic catalytic domain (CD) with an (α/α)6 fold and exhibit five conserved regions within this domain. The CD may or may not be linked to a non-catalytic domain with variable functions depending on its origin. GAs are versatile enzymes with diverse applications in food, biofuel, bioplastic and other chemical industries. Although fungal GAs are commonly employed for these purposes, they have limitations such as their low thermostability and an acidic pH requirement. Alternatively, GAs derived from prokaryotic organisms are a good option to save costs as they exhibit greater thermostability compared to fungal GAs. Moreover, a group of cold-adapted GAs from psychrophilic organisms demonstrates intriguing properties that make them suitable for application in various industries. This review provides a comprehensive overview of the structural and sequential properties as well as biotechnological applications of GAs in different industrial processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article. We have used the following.

References

  • Abbott DW, van Bueren AL (2014) Using structure to inform carbohydrate binding module function. Curr Opin Struct Biol 28:32–40

    Article  CAS  PubMed  Google Scholar 

  • Adam AC, Latorre-Garcia L, Polaina J (2004) Structural analysis of glucoamylase encoded by the STA1 gene of Saccharomyces cerevisiae (var. diastaticus). Yeast 21:379–388

    Article  CAS  PubMed  Google Scholar 

  • Aleshin A, Golubev A, Firsov LM, Honzatko RB (1992) Crystal structure of glucoamylase from Aspergillus awamori var. X100 to 2.2-A resolution. J Biol Chem 267:19291–19298

    Article  CAS  PubMed  Google Scholar 

  • Aleshin AE, Feng PH, Honzatko RB, Reilly PJ (2003) Crystal structure and evolution of a prokaryotic glucoamylase. J Mol Biol 327:61–73

    Article  CAS  PubMed  Google Scholar 

  • Ali S, Hossain Z, Mahmood S, Alam R (1990) Purification of glucoamylase from Aspergillus terreus. World J Microbiol Biotechnol 6:431–433

    Article  CAS  PubMed  Google Scholar 

  • Amaro FX, Kim D, Agarussi MCN, Silva VP, Fernandes T, Arriola KG, Jiang Y, Cervantes AP, Adesogan AT, Ferraretto LF, Yu S, Li W, Vyas D (2021) Effects of exogenous alpha-amylases, glucoamylases, and proteases on ruminal in vitro dry matter and starch digestibility, gas production, and volatile fatty acids of mature dent corn grain. Transl Anim Sci 5:txaa222

    Article  PubMed  Google Scholar 

  • Bagheri A, Khodarahmi R, Mostafaie A (2014) Purification and biochemical characterisation of glucoamylase from a newly isolated Aspergillus niger: relation to starch processing. Food Chem 161:270–278

    Article  CAS  PubMed  Google Scholar 

  • Barrera GN, Tadini CC, Leon AE, Ribotta PD (2016) Use of alpha-amylase and amyloglucosidase combinations to minimize the bread quality problems caused by high levels of damaged starch. J Food Sci Technol 53:3675–3684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bender H (1981) A bacterial glucoamylase degrading cyclodextrins. Partial purification and properties of the enzyme from a Flavobacterium species. Eur J Biochem 115:287–291

    Article  CAS  PubMed  Google Scholar 

  • Blanco CA, Caballero I, Barrios R, Rojas A (2014) Innovations in the brewing industry: light beer. Int J Food Sci Nutr 65:655–660

    Article  CAS  PubMed  Google Scholar 

  • Bott R, Saldajeno M, Cuevas W, Ward D, Scheffers M, Aehle W, Karkehabadi S, Sandgren M, Hansson H (2008) Three-dimensional structure of an intact glycoside hydrolase family 15 glucoamylase from Hypocrea jecorina. Biochemistry 47:5746–5754

    Article  CAS  PubMed  Google Scholar 

  • Brojanigo S, Gronchi N, Cazzorla T, Wong TS, Basaglia M, Favaro L, Casella S (2022) Engineering Cupriavidus necator DSM 545 for the one-step conversion of starchy waste into polyhydroxyalkanoates. Bioresour Technol 347:126383

    Article  CAS  PubMed  Google Scholar 

  • Burhan H, Ravinder SR, Deepak C, Poonam S, Fayaz AM, Sanjay S, Ishfaq A (2014) Psychrophilic yeasts and their biotechnological applications. Afr J Biotechnol 13:2188–2197

    Article  Google Scholar 

  • Busi MV, Barchiesi J, Martin M, Gomez-Casati DF (2013) Starch metabolism in green algae. Starch/stärke 66:28–40

    Article  Google Scholar 

  • Busic A, Mardetko N, Kundas S, Morzak G, Belskaya H, Ivancic Santek M, Komes D, Novak S, Santek B (2018) Bioethanol production from renewable raw materials and its separation and purification: a review. Food Technol Biotechnol 56:289–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carrasco M, Alcaino J, Cifuentes V, Baeza M (2017) Purification and characterization of a novel cold adapted fungal glucoamylase. Microb Cell Fact 16:75

  • Chen Z, Wang L, Shen Y, Hu D, Zhou L, Lu F, Li M (2022) Improving thermostability of chimeric enzymes generated by domain shuffling between two different original glucoamylases. Front Bioeng Biotechnol 10:881421

    Article  PubMed  PubMed Central  Google Scholar 

  • Christiansen C, Abou Hachem M, Janecek S, Vikso-Nielsen A, Blennow A, Svensson B (2009) The carbohydrate-binding module family 20–diversity, structure, and function. FEBS J 276:5006–5029

    Article  CAS  PubMed  Google Scholar 

  • Coutinho PM, Reilly PJ (1994) Structure-function relationships in the catalytic and starch binding domains of glucoamylase. Protein Eng 7:393–400

    Article  CAS  PubMed  Google Scholar 

  • Coutinho PM, Reilly PJ (1997) Glucoamylase structural, functional, and evolutionary relationships. Proteins 29:334–347

    Article  CAS  PubMed  Google Scholar 

  • Crabb WD, Mitchinson C (1997) Enzymes involved in the processing of starch to sugars. Trends Biotechnol 15:349–352

    Article  CAS  Google Scholar 

  • Del Pozo-Insfran D, Urias-Lugo D, Hernandez-Brenes C, Saldivar SO (2004) Effect of amyloglucosidase on wort composition and fermentable carbohydrate depletion in sorghum lager beers. J Inst Brew 110:124–132

    Article  Google Scholar 

  • Devant M, Yu S, Genis S, Larsen T, Wenting L (2020) Effects of exogenous glucoamylase enzymes alone or in combination with a neutral protease on apparent total tract digestibility and feces d-lactate in crossbred angus bulls fed a ration rich in rolled corn. Animals (basel) 10:1077

    Article  PubMed  Google Scholar 

  • Diler G, Rannou C, Guyon C, Prost C, Le-Bail A (2021) Use of amyloglucosidase in a soft wheat dough: impact of process and formulation on glucose production. Appl Food Res 1:100007

    Article  CAS  Google Scholar 

  • Dilshad E, Waheed H, Ali U, Amin A, Ahmed I (2021) General structure and classification of bioplastics and biodegradable plastics. In: Kuddus RM (ed) Bioplastics for sustainable development. Springer, Berlin, pp 61–82

    Chapter  Google Scholar 

  • Drula E, Garron ML, Dogan S, Lombard V, Henrissat B, Terrapon N (2022) The carbohydrate-active enzyme database: functions and literature. Nucleic Acids Res 50:D571–D577

    Article  CAS  PubMed  Google Scholar 

  • Dock C, Hess M, Antranikian G (2008) A thermoactive glucoamylase with biotechnological relevance from the thermoacidophilic Euryarchaeon Thermoplasma acidophilum. Appl Microbiol Biotechnol 78:105–114

    Article  CAS  PubMed  Google Scholar 

  • Else AJ, Tronsmo KM, Niemann L-A, Moonen JHE (2013) Use of an anti-staling enzyme mixture in the preparation of baked bread. In: World Intellectual Property Organization, Vol Patent WO2013028071A1

  • Fagerstrom R (1994) Purification and specificity of recombinant Hormoconis resinae glucoamylase P and endogenous glucoamylase from Trichoderma reesei. Enzyme Microb Technol 16:36–42

    Article  CAS  PubMed  Google Scholar 

  • Fredi G, Dorigato A (2021) Recycling of bioplastic waste: a review. Polym Res 4:159–177

    CAS  Google Scholar 

  • Ge Y, Wang Y, Zhou H, Wang S, Tong Y, Li W (1999) Coimmobilization of glucoamylase and glucose isomerase by molecular deposition technique for one-step conversion of dextrin to fructose. J Biotechnol 67:33–40

    Article  CAS  PubMed  Google Scholar 

  • Gregory DA, Taylor CS, Fricker ATR, Asare E, Tetali SSV, Haycock JW, Roy I (2022) Polyhydroxyalkanoates and their advances for biomedical applications. Trends Mol Med 28:331–342

    Article  CAS  PubMed  Google Scholar 

  • Gupta K, Jana AK, Kumar S, Maiti M (2013) Immobilization of alpha-amylase and amyloglucosidase onto ion-exchange resin beads and hydrolysis of natural starch at high concentration. Bioprocess Biosyst Eng 36:1715–1724

    Article  CAS  PubMed  Google Scholar 

  • Hasunuma T, Ishii J, Kondo A (2015) Rational design and evolutional fine tuning of Saccharomyces cerevisiae for biomass breakdown. Curr Opin Chem Biol 29:1–9

    Article  CAS  PubMed  Google Scholar 

  • Hebeda RE, Zobel HF (1996) Baked goods freshness: technology, evaluation and inhibition of staling. In: Hebeda HS (ed) REZ. CRC Press, New York

    Google Scholar 

  • Hooper SD, Bassett A, Sadohara R, Cichy KA (2021) Elucidation of the low resistant starch phenotype in Phaseolus vulgaris exhibited in the yellow bean Cebo Cela. J Food Sci 86:3975–3986

    Article  CAS  PubMed  Google Scholar 

  • Hua H, Luo H, Bai Y, Wang K, Niu C, Huang H, Shi P, Wang C, Yang P, Yao B (2014) A thermostable glucoamylase from Bispora sp. MEY-1 with stability over a broad pH range and significant starch hydrolysis capacity. PLoS ONE 9:e113581

    Article  PubMed  PubMed Central  Google Scholar 

  • Janecek S, Marecek F, MacGregor EA, Svensson B (2019) Starch-binding domains as CBM families-history, occurrence, structure, function and evolution. Biotechnol Adv 37:107451

    Article  CAS  PubMed  Google Scholar 

  • Jia DX, Wang T, Liu ZJ, Jin LQ, Li JJ, Liao CJ, Chen DS, Zheng YG (2018) Whole cell immobilization of refractory glucose isomerase using tris(hydroxymethyl)phosphine as crosslinker for preparation of high fructose corn syrup at elevated temperature. J Biosci Bioeng 126:176–182

    Article  CAS  PubMed  Google Scholar 

  • Jin LQ, Chen XX, Jin YT, Shentu JK, Liu ZQ, Zheng YG (2021) Immobilization of recombinant Escherichia coli cells expressing glucose isomerase using modified diatomite as a carrier for effective production of high fructose corn syrup in packed bed reactor. Bioprocess Biosyst Eng 44:1781–1792

    Article  CAS  PubMed  Google Scholar 

  • Jin LQ, Xu Q, Liu ZQ, Jia DX, Liao CJ, Chen DS, Zheng YG (2017) Immobilization of recombinant glucose isomerase for efficient production of high fructose corn syrup. Appl Biochem Biotechnol 183:293–306

    Article  CAS  PubMed  Google Scholar 

  • Kawaguchi H, Hasunuma T, Ogino C, Kondo A (2016) Bioprocessing of bio-based chemicals produced from lignocellulosic feedstocks. Curr Opin Biotechnol 42:30–39

    Article  CAS  PubMed  Google Scholar 

  • Kim MS, Park JT, Kim YW, Lee HS, Nyawira R, Shin HS, Park CS, Yoo SH, Kim YR, Moon TW, Park KH (2004) Properties of a novel thermostable glucoamylase from the hyperthermophilic archaeon Sulfolobus solfataricus in relation to starch processing. Appl Environ Microbiol 70:3933–3940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kognou AL, Shrestha S, Jiang Z, Xu C, Sun F, Qin W (2022) High-fructose corn syrup production and its new applications for 5-hydroxymethylfurfural and value-added furan derivatives: promises and challenges. J Biores Bioprod 7:148–160

    Google Scholar 

  • Kumar D, Singh V (2016) Dry-grind processing using amylase corn and superior yeast to reduce the exogenous enzyme requirements in bioethanol production. Biotechnol Biofuels 9:228

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar P, Satyanarayana T (2007) Optimization of culture variables for improving glucoamylase production by alginate-entrapped Thermomucor indicae-seudaticae using statistical methods. Bioresour Technol 98:1252–1259

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Satyanarayana T (2009) Microbial glucoamylases: characteristics and applications. Crit Rev Biotechnol 29:225–255

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Satyanarayana T (2003) Purification and kinetics of a raw starch-hydrolyzing, thermostable, and neutral glucoamylase of the thermophilic mold Thermomucor indicae-seudaticae. Biotechnol Prog 19:936–944

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lago MC, Dos Santos FC, Bueno PSA, de Oliveira MAS, Barbosa-Tessmann IP (2021) The glucoamylase from Aspergillus wentii: purification and characterization. J Basic Microbiol 61:443–458

    Article  CAS  PubMed  Google Scholar 

  • Lam WC, Pleissner D, Lin CS (2013) Production of fungal glucoamylase for glucose production from food waste. Biomolecules 3:651–661

    Article  PubMed  PubMed Central  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Lebenthal E, Khin Maung U, Zheng BY, Lu RB, Lerner A (1994) Small intestinal glucoamylase deficiency and starch malabsorption: a newly recognized alpha-glucosidase deficiency in children. J Pediatr 124:541–546

    Article  CAS  PubMed  Google Scholar 

  • Lebenthal E, Lee PC (1980a) Development of functional responses in human exocrine pancreas. Pediatrics 66:556–560

    Article  CAS  PubMed  Google Scholar 

  • Lebenthal E, Lee PC (1980b) Glucoamylase and disaccharidase activities in normal subjects and in patients with mucosal injury of the small intestine. J Pediatr 97:389–393

    Article  CAS  PubMed  Google Scholar 

  • Lee PC, Werlin S, Trost B, Struve M (2004) Glucoamylase activity in infants and children: normal values and relationship to symptoms and histological findings. J Pediatr Gastroenterol Nutr 39:161–165

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Wei P, Cheng H, He P, Wang Q, Jiang N (2014) Functional role of β-domain in the Thermoanaerobacter tengcongensis glucoamylase. Appl Microbiol Biotechnol 98:2091–2099

  • Li X, Mettu S, Martin GJO, Ashokkumar M, Sze C, Lin K (2019) Ultrasonic pretreatment of food waste to accelerate enzymatic hydrolysis for glucose production. Ultrason Sonochem 53:77–82

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Ji K, Dong W, Ye X, Wu J, Zhou J, Wang F, Chen Q, Fu L, Li S, Huang Y, Cui Z (2017) Cloning, heterologous expression, and enzymatic characterization of a novel glucoamylase GlucaM from Corallococcus sp. strain EGB. Protein Expr Purif 129:122–127

    Article  CAS  PubMed  Google Scholar 

  • Lincoln L, More VS, More SS (2019) Purification and biochemical characterization of extracellular glucoamylase from Paenibacillus amylolyticus strain. J Basic Microbiol 59:375–384

    Article  CAS  PubMed  Google Scholar 

  • Liu HL, Wang WC (2003) Protein engineering to improve the thermostability of glucoamylase from Aspergillus awamori based on molecular dynamics simulations. Protein Eng 16:19–25

    Article  PubMed  Google Scholar 

  • Liu YN, Lai YT, Chou WI, Chang MD, Lyu PC (2007) Solution structure of family 21 carbohydrate-binding module from Rhizopus oryzae glucoamylase. Biochem J 403:21–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu ZQ, Zheng W, Huang JF, Jin LQ, Jia DX, Zhou HY, Xu JM, Liao CJ, Cheng XP, Mao BX, Zheng YG (2015) Improvement and characterization of a hyperthermophilic glucose isomerase from Thermoanaerobacter ethanolicus and its application in production of high fructose corn syrup. J Ind Microbiol Biotechnol 42:1091–1103

    Article  CAS  PubMed  Google Scholar 

  • Lopez C, Torrado A, Guerra NP, Pastrana L (2005) Optimization of solid-state enzymatic hydrolysis of chestnut using mixtures of alpha-amylase and glucoamylase. J Agric Food Chem 53:989–995

    Article  CAS  PubMed  Google Scholar 

  • Marin-Navarro J, Polaina J (2011) Glucoamylases: structural and biotechnological aspects. Appl Microbiol Biotechnol 89:1267–1273

    Article  CAS  PubMed  Google Scholar 

  • Marshall CJ (1997) Cold-adapted enzymes. Trends Biotechnol 15:359–364

    Article  CAS  PubMed  Google Scholar 

  • Mirdita M, Schutze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M (2022) ColabFold: making protein folding accessible to all. Nat Methods 19:679–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mertens JA, Braker JD, Jordan DB (2010) Catalytic properties of two Rhizopus oryzae 99–880 glucoamylase enzymes without starch binding domains expressed in Pichia pastoris. Appl Biochem Biotechnol 162:2197–2213

    Article  CAS  PubMed  Google Scholar 

  • Mishra A, Debnath Das M (2002) Effect of pH on simultaneous saccharification and isomerization by glucoamylase and glucose isomerase. Appl Biochem Biotechnol 102–103:193–199

    Article  PubMed  Google Scholar 

  • Mohamed L, Zakaria M, Ali A, el Youssfi K, Mohamed E, Mohamed O, El Hassan B, Mohamed J (2007) Optimization of composition of media for the production of extracellular glucoamylase by Candida guilliermendii. Pak J Biol Sci 10:3322–3329

    Article  CAS  PubMed  Google Scholar 

  • Morimoto NHT, Isono N, Tochihara T, Watanabe K, Ito HMH (2004) Cloning, sequencing and heterologous expression of the gene encoding glucoamylase from Clostridium thermoamylolyticum and biochemical characterization of the recombinant enzyme. J Appl Glycosci 51:33–36

    Article  CAS  Google Scholar 

  • Nevoigt E (2008) Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol Rev 72:379–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nisha M, Satyanarayana T (2014) Characterization and multiple applications of a highly thermostable and Ca(2)(+)-independent amylopullulanase of the extreme thermophile Geobacillus thermoleovorans. Appl Biochem Biotechnol 174:2594–2615

    Article  CAS  PubMed  Google Scholar 

  • O’Rourke T, Godfrey T, West S (1996) In industrial enzymology, 2nd edn. MacMillan, London

    Google Scholar 

  • Obulisamy PK, Mehariya S (2021) Polyhydroxyalkanoates from extremophiles: a review. Bioresour Technol 325:124653

    Article  CAS  PubMed  Google Scholar 

  • Ogunsona E, Ojogbo E, Mekonnen T (2018) Advanced material applications of starch and its derivatives. Eur Polym J 108:570–581

    Article  CAS  Google Scholar 

  • Ohnishi H, Sakai H, Ohta T (1991) Purification and some properties of a glucoamylase from Clostridium sp. G0005. Agric Biol Chem 55:1901–1902

    CAS  Google Scholar 

  • Parashar D, Satyanarayana T (2017) Engineering a chimeric acid-stable alpha-amylase-glucoamylase (Amy-Glu) for one step starch saccharification. Int J Biol Macromol 99:274–281

    Article  CAS  PubMed  Google Scholar 

  • Pedersen S (1993) Industrial aspects of immobilized glucose isomerase. Bioprocess Technol 16:185–208

    CAS  Google Scholar 

  • Pomeranz Y, Rubenthaler GL, Finney KF (1964) Use of amyloglucosidase in bread making. Food Technol 18:138–140

    CAS  Google Scholar 

  • Rajendran N, Han J (2023) Techno-economic analysis and life cycle assessment of poly (butylene succinate) production using food waste. Waste Manag 156:168–176

    Article  CAS  PubMed  Google Scholar 

  • Reilly PJ (1999) Protein engineering of glucoamylase to improve industrial performance—a review. Starch-Stärke 51:269–274

    Article  CAS  Google Scholar 

  • Roth C, Moroz OV, Ariza A, Skov LK, Ayabe K, Davies GJ, Wilson KS (2018) Structural insight into industrially relevant glucoamylases: flexible positions of starch-binding domains. Acta Crystallogr D Struct Biol 74:463–470

    Article  CAS  PubMed  Google Scholar 

  • Sakaguchi M, Matsushima Y, Nankumo T, Seino J, Miyakawa S, Honda S, Sugahara Y, Oyama F, Kawakita M (2014) Glucoamylase of Caulobacter crescentus CB15: cloning and expression in Escherichia coli and functional identification. AMB Express 4:5

    Article  PubMed  PubMed Central  Google Scholar 

  • Sato K, Mizuno A, Mukai N, Amano H (2006) Method of manufacturing fermented malt beverages. In: Vol patent Us7, 115, 289 B2

  • Sauer J, Sigurskjold BW, Christensen U, Frandsen TP, Mirgorodskaya E, Harrison M, Roepstorff P, Svensson B (2000) Glucoamylase: structure/function relationships, and protein engineering. Biochim Biophys Acta 1543:275–293

    Article  CAS  PubMed  Google Scholar 

  • Serour E, Antranikian G (2002) Novel thermoactive glucoamylases from the thermoacidophilic Archaea Thermoplasma acidophilum, Picrophilus torridus and Picrophilus oshimae. Antonie Van Leeuwenhoek 81:73–83

    Article  CAS  PubMed  Google Scholar 

  • Sevcik J, Hostinova E, Solovicova A, Gasperik J, Dauter Z, Wilson KS (2006) Structure of the complex of a yeast glucoamylase with acarbose reveals the presence of a raw starch binding site on the catalytic domain. FEBS J 273:2161–2171

    Article  CAS  PubMed  Google Scholar 

  • Sevcik J, Solovicova A, Hostinova E, Gasperik J, Wilson KS, Dauter Z (1998) Structure of glucoamylase from Saccharomycopsis fibuligera at 1.7 A resolution. Acta Crystallogr D Biol Crystallogr 54:854–866

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui KS, Cavicchioli R (2006) Cold-adapted enzymes. Annu Rev Biochem 75:403–433

    Article  CAS  PubMed  Google Scholar 

  • Siguenza-Andres T, Pando V, Gomez M, Rodriguez-Nogales JM (2022) Optimization of a simultaneous enzymatic hydrolysis to obtain a high-glucose slurry from bread waste. Foods 11:1793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silveira ST, Oliveira MS, Costa JA, Kalil SJ (2006) Optimization of glucoamylase production by Aspergillus niger in solid-state fermentation. Appl Biochem Biotechnol 128:131–140

    Article  CAS  PubMed  Google Scholar 

  • Smith AM (2008) Prospects for increasing starch and sucrose yields for bioethanol production. Plant J 54:546–558

    Article  CAS  PubMed  Google Scholar 

  • Sorimachi K, Jacks AJ, Le Gal-Coeffet MF, Williamson G, Archer DB, Williamson MP (1996) Solution structure of the granular starch binding domain of glucoamylase from Aspergillus niger by nuclear magnetic resonance spectroscopy. J Mol Biol 259:970–987

    Article  CAS  PubMed  Google Scholar 

  • Specka U, Mayer F, Antranikian G (1991) Purification and properties of a thermoactive glucoamylase from clostridium thermosaccharolyticum. Appl Environ Microbiol 57:2317–2323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Struyf N, Verspreet J, Verstrepen KJ, Courtin CM (2017) Investigating the impact of α-amylase, α-glucosidase and glucoamylase action on yeast-mediated bread dough fermentation and bread sugar levels. J Cereal Sci 75:35–44

    Article  CAS  Google Scholar 

  • Svensson B, Larsen K, Gunnarsson A (1986) Characterization of a glucoamylase G2 from Aspergillus niger. Eur J Biochem 154:497–502

    Article  CAS  PubMed  Google Scholar 

  • Swain MR, Natarajan V, Krishnan C (2017) Marine enzymes and microorganisms for bioethanol production. Adv Food Nutr Res 80:181–197

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y, Tao W, Blanchard JS, Hehre EJ (1994) Transition state structures for the hydrolysis of alpha-d-glucopyranosyl fluoride by retaining and inverting reactions of glycosylases. J Biol Chem 269:32306–32312

    Article  CAS  PubMed  Google Scholar 

  • Tang G, Zhong L, Yang K, Zheng Y, Cao X (1996) Construction of a brewing yeast having glucoamylase activity and its fermentation characteristics. Chin J Biotechnol 12:263–267

    CAS  PubMed  Google Scholar 

  • Teigiserova DA, Hamelin L, Thomsen M (2020) Towards transparent valorization of food surplus, waste and loss: clarifying definitions, food waste hierarchy, and role in the circular economy. Sci Total Environ 706:136033

    Article  CAS  PubMed  Google Scholar 

  • Tong L, Zheng J, Wang X, Wang X, Huang H, Yang H, Tu T, Wang Y, Bai Y, Yao B, Luo H, Qin X (2021) Improvement of thermostability and catalytic efficiency of glucoamylase from Talaromyces leycettanus JCM12802 via site-directed mutagenesis to enhance industrial saccharification applications. Biotechnol Biofuels 14:202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tse TJ, Wiens DJ, Reaney MJ (2021) Production of bioethanol—a review of factors affecting ethanol yield. Fermentation 7:268

    Article  CAS  Google Scholar 

  • Valjakka TT, Ponte JG, Kulp K (1994) Studies on a raw-starch digesting enzyme. II. Replacement of sucrose in white pan bread. Cereal Chem 71:145–149

    CAS  Google Scholar 

  • Vallat I, Monsan P, Riba JP (1985) Influence of glucose on the kinetics of maltodextrin hydrolysis using free and immobilized glucoamylase. Biotechnol Bioeng 27:1274–1275

    Article  CAS  PubMed  Google Scholar 

  • Wang JB, Kong B, Wang H, Cai LY, Zhang RJ, Cai FJ, Zhu ZJ, Cao JH, Xu J (2021a) Production of butanol from distillers’ grain waste by a new aerotolerant strain of Clostridium beijerinckii LY-5. Bioprocess Biosyst Eng 44:2167–2179

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Liao B, Li Z, Liu G, Diao L, Qian F, Yang J, Jiang Y, Zhao S, Li Y, Yang S (2021b) Reducing glucoamylase usage for commercial-scale ethanol production from starch using glucoamylase expressing Saccharomyces cerevisiae. Biores Bioprod 8:20

    Article  Google Scholar 

  • Wang XQ, Wang QH, Hong ZM, Yin W (2009) Lactic acid fermentation of food waste using integrated glucoamylase production. J Chem Technol Biotechnol 84:139–143

    Article  CAS  Google Scholar 

  • Wayllace NM, Hedin N, Busi MV, Gomez-Casati DF (2021) Characterization of SdGA, a cold-adapted glucoamylase from Saccharophagus degradans. Biotechnol Rep (amst) 30:e00625

    Article  CAS  PubMed  Google Scholar 

  • Wayllace NM, Hedin N, Busi MV, Gomez-Casati DF (2022) Identification, molecular and biochemical characterization of a novel thermoactive and thermostable glucoamylase from Thermoanaerobacter ethanolicus. Biotechnol Lett 44:1201–1216

    Article  CAS  PubMed  Google Scholar 

  • Xian L, Feng JX (2018) Purification and biochemical characterization of a novel mesophilic glucoamylase from Aspergillus tritici WZ99. Int J Biol Macromol 107:1122–1130

    Article  CAS  PubMed  Google Scholar 

  • Yadav AR, Guha M, Reddy SY, Tharanathan RN, Ramteke RS (2007) Physical properties of acetylated and enzyme-modified potato and sweet potato flours. J Food Sci 72:E249-253

    Article  CAS  PubMed  Google Scholar 

  • Yan BX, Sun YQ (1997) Glycine residues provide flexibility for enzyme active sites. J Biol Chem 272:3190–3194

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Lee JH, Yoo HY, Shin HY, Thapa LP, Park C, Kim SW (2014) Production of bioethanol and biodiesel using instant noodle waste. Bioprocess Biosyst Eng 37:1627–1635

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y, Xue Y, Zhang Y, Zhou C, Schwaneberg U, Ma Y (2010) Cloning, expression, and characterization of a thermostable glucoamylase from Thermoanaerobacter tengcongensis MB4. Appl Microbiol Biotechnol 87:225–233

    Article  CAS  PubMed  Google Scholar 

  • Zong X, Wen L, Wang Y, Li L (2022) Research progress of glucoamylase with industrial potential. J Food Biochem 46:e14099

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

NMW is a doctoral fellow from CONICET. MM, MVB and DFGC are research scientists from CONICET.

Funding

This work was supported by ANPCyT (PICT 2018 01440), National University of Rosario (VT-2021) and CONICET (PIP 2021–3068).

Author information

Authors and Affiliations

Authors

Contributions

Writing original draft: NMW; writing, review and editing: DFGC, MVB and MM. We searched databases (Pubmed and Scopus) for keywords such as glucoamylase, glucoside hydrolase, microbial glucoamylases, glucoamylase structure and biotechnological applications of glucoamylases.

Corresponding authors

Correspondence to María V. Busi or Diego F. Gomez-Casati.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wayllace, N.M., Martín, M., Busi, M.V. et al. Microbial glucoamylases: structural and functional properties and biotechnological uses. World J Microbiol Biotechnol 39, 293 (2023). https://doi.org/10.1007/s11274-023-03731-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-023-03731-z

Keywords

Navigation