Skip to main content
Log in

Synthesis of Silver Nanoparticles by Biogenic Methods: Characterization and Development of a Sensor Sensible to Pharmaceutical Medicine Paracetamol

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

In this study, silver nanoparticles (Ag NPs) were synthesized in biogenic methods. It is aimed to improve the electrochemical sensor efficiency of synthesized Ag NPs against the pharmaceutical drug paracetamol. For this purpose, fourier transmission infrared spectroscopy (FTIR), ultra-violet visible spectroscopy (Uv–vis), X-ray differentiation (XRD), and transmission electron spectroscopy (TEM) analyses were performed to elucidate the structure of the synthesized Ag NPs. In the TEM characterization results, the mean size of the NPs was found to be 19.035 nm using TEM characterization and the XRD results, the crystalline size of the NPs was 11.66 nm. Sensor studies were performed with cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. Paracetamol showed a sensitivity of approximately 0.4 V to Ag NPs in this study. The linear ranges of this study are 6.5–14.5 µM, with a limit of detection (LOD) of 5.79 µM and a limit of quantification (LOQ) of 17.56 µM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Švorc Ľ, Sochr J, Tomčík P, Rievaj M, Bustin D (2012) Simultaneous determination of paracetamol and penicillin V by square-wave voltammetry at a bare boron-doped diamond electrode. Electrochim Acta 68:227–234

    Article  Google Scholar 

  2. Alanazi K, Cruz AG, Di Masi S, Voorhaar A, Ahmad OS, Cowen T, Piletska E, Langford N, Coats TJ, Sims MR (2021) Disposable paracetamol sensor based on electroactive molecularly imprinted polymer nanoparticles for plasma monitoring. Sens Actuators B 329:129128

    Article  CAS  Google Scholar 

  3. Bateman DN, Dear JW, Thanacoody HR, Thomas SH, Eddleston M, Sandilands EA, Coyle J, Cooper JG, Rodriguez A, Butcher I (2014) Reduction of adverse effects from intravenous acetylcysteine treatment for paracetamol poisoning: a randomised controlled trial. The Lancet 383:697–704

    Article  CAS  Google Scholar 

  4. Caparrotta TM, Antoine DJ, Dear JW (2018) Are some people at increased risk of paracetamol-induced liver injury? A critical review of the literature. Eur J Clin Pharmacol 74:147–160

    Article  CAS  PubMed  Google Scholar 

  5. Shalauddin M, Akhter S, Basirun WJ, Lee VS, Johan MR (2022) A metal free nanosensor based on nanocellulose-polypyrrole matrix and single-walled carbon nanotube: experimental study and electroanalytical application for determination of paracetamol and ciprofloxacin. Environ Nanotechnol Monit Manag 18:100691

    CAS  Google Scholar 

  6. Ambika A, Navya N, Kiran Kumar S, Suresha B (2022) Electrochemical determination of paracetamol by SWCNT-modified carbon paste electrode: a cyclic voltammetric study. Carbon Lett 32:1287–1295

    Article  Google Scholar 

  7. Biswas JK, Sarkar D (2019) Nanopollution in the aquatic environment and ecotoxicity: no nano issue! Curr Pollut Rep 5:4–7

    Article  Google Scholar 

  8. Yang M, Wang L, Lu H, Dong Q, Li H, Liu S (2022) Graphene and graphene-like carbon nanomaterials-based electrochemical biosensors for phytohormone detection. Carbon Letters 33:1–16

    Google Scholar 

  9. Karimi-Maleh H, Liu Y, Li Z, Darabi R, Orooji Y, Karaman C, Karimi F, Baghayeri M, Rouhi J, Fu L (2023) Calf thymus ds-DNA intercalation with pendimethalin herbicide at the surface of ZIF-8/Co/rGO/C3N4/ds-DNA/SPCE; A bio-sensing approach for pendimethalin quantification confirmed by molecular docking study. Chemosphere 332:138815

    Article  CAS  PubMed  Google Scholar 

  10. Karaman C, Karaman O, Show P-L, Orooji Y, Karimi-Maleh H (2021) Utilization of a double-cross-linked amino-functionalized three-dimensional graphene networks as a monolithic adsorbent for methyl orange removal: equilibrium, kinetics, thermodynamics and artificial neural network modeling. Environ Res 207:112156

    Article  PubMed  Google Scholar 

  11. Saghiri S, Ebrahimi M, Bozorgmehr MR (1999) Electrochemical amplified sensor with Mgo nanoparticle and ionic liquid: a powerful strategy for methyldopa analysis. Chem Methodol 5:234–239

    Google Scholar 

  12. Hussain RT, Islam AS, Khairuddean M, Suah FBM (2022) A polypyrrole/GO/ZnO nanocomposite modified pencil graphite electrode for the determination of andrographolide in aqueous samples. Alex Eng J 61:4209–4218

    Article  Google Scholar 

  13. Nasehi P, Moghaddam MS, Rezaei-savadkouhi N, Alizadeh M, Yazdani MN, Agheli H (2022) Monitoring of Bisphenol A in water and soft drink products using electrochemical sensor amplified with TiO2-SWCNTs and ionic liquid. J Food Meas Charact 16:2440–2445

    Article  Google Scholar 

  14. Ghalkhani M, Zare N, Karimi F, Karaman C, Alizadeh M, Vasseghian Y (2022) Recent advances in Ponceau dyes monitoring as food colorant substances by electrochemical sensors and developed procedures for their removal from real samples. Food Chem Toxicol 161:112830

    Article  CAS  PubMed  Google Scholar 

  15. Karimi-Maleh H, Darabi R, Baghayeri M, Karimi F, Fu L, Rouhi J, Niculina DE, Gündüz ES, Dragoi E (2023) Recent developments in carbon nanomaterials-based electrochemical sensors for methyl parathion detection. J Food Meas Charact 17:1–19

    Article  Google Scholar 

  16. Subaşı-Zarbaliyev B, Kutlu G, Törnük F (2023) Polyvinyl alcohol nanoparticles loaded with propolis extract: fabrication, characterization and antimicrobial activity: Original scientific paper. ADMET and DMPK. https://doi.org/10.5599/admet.1740

    Article  PubMed  PubMed Central  Google Scholar 

  17. Nikpour S, Ansari-Asl Z, Sedaghat T, Hoveizi E (2022) Curcumin-loaded Fe-MOF/PDMS porous scaffold: fabrication, characterization, and biocompatibility assessment. J Ind Eng Chem 110:188–197

    Article  CAS  Google Scholar 

  18. Tang M-DQ, Trinh N-T, Vu D, Nguyen T-HT, Dong HT, Van Vo T, Vong BL (2023) Preparation of self-assembly silica redox nanoparticles to improve drug encapsulation and suppress the adverse effect of doxorubicin. ADMET and DMPK. https://doi.org/10.5599/admet.1845

    Article  PubMed  PubMed Central  Google Scholar 

  19. Pratiwi RD, El Muttaqien S, Gustini N, Difa NS, Syahputra G (2023) Eco-friendly synthesis of chitosan and its medical application: from chitin extraction to nanoparticle preparation. ADMET and DMPK 11:435

    PubMed  PubMed Central  Google Scholar 

  20. Janani G, Girigoswami A, Girigoswami K (2023) Supremacy of nanoparticles in the therapy of chronic myelogenous leukemia. ADMET and DMPK. https://doi.org/10.5599/admet.2013

    Article  PubMed  PubMed Central  Google Scholar 

  21. Prabhu SA, Kavithayeni V, Suganthy R, Geetha K (2021) Graphene quantum dots synthesis and energy application: a review. Carbon Lett 31:1–12

    Article  Google Scholar 

  22. Gong W, Zhang H, Yang L, Yang Y, Wang J, Liang H (2022) Core@ shell MOFs derived Co2P/CoP@ NPGC as a highly-active bifunctional electrocatalyst for ORR/OER. J Ind Eng Chem 106:492–502

    Article  CAS  Google Scholar 

  23. Jamila GS, Sajjad S, Leghari SAK, Kallio T, Flox C (2022) Glucose derived carbon quantum dots on tungstate-titanate nanocomposite for hydrogen energy evolution and solar light catalysis. J Nanostruct Chem 12:611–623

    Article  CAS  Google Scholar 

  24. Karimi-Maleh H, Karaman C, Karaman O, Karimi F, Vasseghian Y, Fu L, Baghayeri M, Rouhi J, Senthil Kumar P, Show P-L (2022) Nanochemistry approach for the fabrication of Fe and N co-decorated biomass-derived activated carbon frameworks: a promising oxygen reduction reaction electrocatalyst in neutral media. J Nanostruct Chem 12:1–11

    Article  Google Scholar 

  25. Lin X, Zeng W, Chen Y, Su T, Zhong Q, Gong L, Liu Y (2022) UiO-66-derived porous-carbon adsorbents: synthesis, characterization and tetracycline adsorption performance. Carbon Lett 32:875–884

    Article  Google Scholar 

  26. Vaziri M, Tabatabaee Ghomsheh SM, Azimi A, Mirzaei M (2021) Haloacetonitriles (HANs) removal assessment from aqueous solution by hybrid adsorption/membrane filtration process. Chem Methodol 5:41–49

    CAS  Google Scholar 

  27. Kazemi F, Abedi MR, Ebrahimi M (2021) Photodegradation of tramadol using α-Fe2O3 nanoparticles/12-tungstosilicic acid as an efficient photocatalyst in water sample employing box-behnken design. Chem Methodol 5:522–533

    CAS  Google Scholar 

  28. Moneer AA, El-Mallah NM, El-Sadaawy MM, Khedawy M, Ramadan MS (2021) Kinetics, thermodynamics, isotherm modeling for removal of reactive Red 35 and disperse yellow 56 dyes using batch bi-polar aluminum electrocoagulation. Alex Eng J 60:4139–4154

    Article  Google Scholar 

  29. Al Sharabati M, Abokwiek R, Al-Othman A, Tawalbeh M, Karaman C, Orooji Y, Karimi F (2021) Biodegradable polymers and their nano-composites for the removal of endocrine-disrupting chemicals (EDCs) from wastewater: a review. Environ Res 202:111694

    Article  CAS  PubMed  Google Scholar 

  30. Karimi-Maleh H, Orooji Y, Karimi F, Karaman C, Vasseghian Y, Dragoi EN, Karaman O (2023) Integrated approaches for waste to biohydrogen using nanobiomediated towards low carbon bioeconomy. Adv Compos Hybrid Mater 6:29

    Article  CAS  Google Scholar 

  31. Karimi-Maleh H, Ghalkhani M, Dehkordi ZS, Singh J, Wen Y, Baghayeri M, Rouhi J, Fu L, Rajendran S (2023) MOF-enabled pesticides as developing approach for sustainable agriculture and reducing environmental hazards. J Indust Eng Chem. https://doi.org/10.1016/j.jiec.2023.08.044

    Article  Google Scholar 

  32. Thakur S, Singh S, Pal B (2022) Superior adsorptive removal of brilliant green and phenol red dyes mixture by CaO nanoparticles extracted from egg shells. J Nanostruct Chem 12:207–221

    Article  CAS  Google Scholar 

  33. Karimi F, Demir E, Aydogdu N, Shojaei M, Taher MA, Asrami PN, Alizadeh M, Ghasemi Y, Cheraghi S (2022) Advancement in electrochemical strategies for quantification of Brown HT and Carmoisine (Acid Red 14) Drom Azo Dyestuff class. Food Chem Toxicol 165:113075

    Article  CAS  PubMed  Google Scholar 

  34. Alizadeh M, Demir E, Aydogdu N, Zare N, Karimi F, Kandomal SM, Rokni H, Ghasemi Y (2022) Recent advantages in electrochemical monitoring for the analysis of amaranth and carminic acid food colors. Food Chem Toxicol 163:112929

    Article  CAS  PubMed  Google Scholar 

  35. Buledi JA, Mahar N, Mallah A, Solangi AR, Palabiyik IM, Qambrani N, Karimi F, Vasseghian Y, Karimi-Maleh H (2022) Electrochemical quantification of mancozeb through tungsten oxide/reduced graphene oxide nanocomposite: a potential method for environmental remediation. Food Chem Toxicol 161:112843

    Article  CAS  PubMed  Google Scholar 

  36. Messaoudi ZA, Lahcene D, Benaissa T, Messaoudi M, Zahraoui B, Belhachemi M, Choukchou-Braham A (2022) Adsorption and photocatalytic degradation of crystal violet dye under sunlight irradiation using natural and modified clays by zinc oxide. Chem Methodol 6:661–676

    CAS  Google Scholar 

  37. Mulik BB, Munde AV, Dighole RP, Sathe BR (2021) Electrochemical determination of semicarbazide on cobalt oxide nanoparticles: implication towards environmental monitoring. J Ind Eng Chem 93:259–266

    Article  CAS  Google Scholar 

  38. Chadha U, Bhardwaj P, Agarwal R, Rawat P, Agarwal R, Gupta I, Panjwani M, Singh S, Ahuja C, Selvaraj SK (2022) Recent progress and growth in biosensors technology: a critical review. J Ind Eng Chem 109:21–51

    Article  CAS  Google Scholar 

  39. Ermis N, Zare N, Darabi R, Alizadeh M, Karimi F, Singh J, Shahidi S-A, Dragoi EN, Camarada MB, Baghayeri M (2023) Recent advantage in electrochemical monitoring of gallic acid and kojic acid: a new perspective in food science. J Food Meas Charact 17:1–10

    Article  Google Scholar 

  40. Khan ZG, Patil MR, Nangare SN, Patil AG, Boddu SH, Tade RS, Patil PO (2022) Surface nanoarchitectured metal–organic frameworks-based sensor for reduced glutathione sensing: a review. J Nanostruct Chem 12:1053–1074

    Article  Google Scholar 

  41. Cheraghi S, Taher MA, Karimi-Maleh H, Karimi F, Shabani-Nooshabadi M, Alizadeh M, Al-Othman A, Erk N, Raman PKY, Karaman C (2022) Novel enzymatic graphene oxide based biosensor for the detection of glutathione in biological body fluids. Chemosphere 287:132187

    Article  CAS  PubMed  Google Scholar 

  42. John A, Benny L, Cherian AR, Narahari SY, Varghese A, Hegde G (2021) Electrochemical sensors using conducting polymer/noble metal nanoparticle nanocomposites for the detection of various analytes: a review. J Nanostruct Chem 11:1–31

    Article  Google Scholar 

  43. Zhang W, Lu R, Fan X, Weng Y (2023) An electrochemical sensor based on graphene nanoribbon nano-catalyst for determination of etoposide as an approved drug in lung cancer. Alex Eng J 77:247–254

    Article  Google Scholar 

  44. Wang P, Chen S, Guan Y, Li Y, Jiamali A (2023) An electrochemical sensing platform based on gold nanostars for the detection of Alzheimer’s disease marker Aβ oligomers (Aβo). Alex Eng J 81:1–6

    Article  Google Scholar 

  45. Lee S, Oh J, Kim D, Piao Y (2016) A sensitive electrochemical sensor using an iron oxide/graphene composite for the simultaneous detection of heavy metal ions. Talanta 160:528–536

    Article  CAS  PubMed  Google Scholar 

  46. Huang Z, Yu X, Yang Q, Zhao Y, Wu W (2021) Aptasensors for Staphylococcus aureus risk assessment in food. Front Microbiol 12:714265

    Article  PubMed  PubMed Central  Google Scholar 

  47. de Brito Ayres L, Brooks J, Whitehead K, Garcia CD (2022) Rapid detection of Staphylococcus aureus using paper-derived electrochemical biosensors. Anal Chem 94:16847–16854

    Article  PubMed  Google Scholar 

  48. Altuner EE, Ozalp VC, Yilmaz MD, Sudagidan M, Aygun A, Acar EE, Tasbasi BB, Sen F (2022) Development of electrochemical aptasensors detecting phosphate ions on TMB substrate with epoxy-based mesoporous silica nanoparticles. Chemosphere 297:134077

    Article  CAS  PubMed  Google Scholar 

  49. Arikan K, Burhan H, Bayat R, Sen F (2022) Glucose nano biosensor with non-enzymatic excellent sensitivity prepared with nickel–cobalt nanocomposites on f-MWCNT. Chemosphere 291:132720

    Article  CAS  PubMed  Google Scholar 

  50. Koronkiewicz S (2021) Photometric determination of iron in pharmaceutical formulations using double-beam direct injection flow detector. Molecules 26:4498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Eskandari H, Amirzehni M, Asadollahzadeh H, Hassanzadeh J, Eslami PA (2018) MIP-capped terbium MOF-76 for the selective fluorometric detection of cefixime after its preconcentration with magnetic graphene oxide. Sens Actuators B 275:145–154

    Article  CAS  Google Scholar 

  52. Zhang Z, Karimi-Maleh H (2023) In situ synthesis of label-free electrochemical aptasensor-based sandwich-like AuNPs/PPy/Ti3C2Tx for ultrasensitive detection of lead ions as hazardous pollutants in environmental fluids. Chemosphere 324:138302

    Article  CAS  PubMed  Google Scholar 

  53. Zhang Z, Karimi-Maleh H (2023) Label-free electrochemical aptasensor based on gold nanoparticles/titanium carbide MXene for lead detection with its reduction peak as index signal. Adv Compos Hybrid Mater 6:68

    Article  CAS  Google Scholar 

  54. Kaya SI, Kurbanoglu S, Yavuz E, Demiroglu Mustafov S, Sen F, Ozkan SA (2020) Carbon-based ruthenium nanomaterial-based electroanalytical sensors for the detection of anticancer drug Idarubicin. Sci Rep 10:11057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Varodi C, Coros M, Pogăcean F, Ciorîţă A, Turza A, Pruneanu S (2022) Nitrogen-doped graphene-based sensor for electrochemical detection of piroxicam, a NSAID drug for COVID-19 patients. Chemosensors 10:47

    Article  CAS  Google Scholar 

  56. Kilele JC, Chokkareddy R, Rono N, Redhi GG (2020) A novel electrochemical sensor for selective determination of theophylline in pharmaceutical formulations. J Taiwan Inst Chem Eng 111:228–238

    Article  CAS  Google Scholar 

  57. Ying S, Guan Z, Ofoegbu PC, Clubb P, Rico C, He F, Hong J (2022) Green synthesis of nanoparticles: current developments and limitations. Environ Technol Innov 26:102336

    Article  CAS  Google Scholar 

  58. Karimi F, Altuner EE, Gulbagca F, Tiri RNE, Sen F, Javadi A, Dragoi EN (2023) Facile bio-fabrication of ZnO@ AC nanoparticles from chitosan: characterization, hydrogen generation, and photocatalytic properties. Environ Res 216:114668

    Article  CAS  PubMed  Google Scholar 

  59. Maheswari J, Anjum MR, Sankari M, Narasimha G, Krishna SBN, Kishori B (2023) Green synthesis, characterization and biological activities of silver nanoparticles synthesized from Neolamarkia cadamba. ADMET and DMPK 11(4):573–585

    PubMed  PubMed Central  Google Scholar 

  60. Altuner EE, Erduran V, Şen F (2023) Green synthesized nanomaterials for bioimaging. In: Synthesis of bionanomaterials for biomedical applications. Elsevier, pp 265–286

  61. Karimi F, Tiri RNE, Aygun A, Gulbagca F, Özdemir S, Gonca S, Gur T, Sen F (2023) One-step synthesized biogenic nanoparticles using Linum usitatissimum: application of sun-light photocatalytic, biological activity and electrochemical H2O2 sensor. Environ Res 218:114757

    Article  CAS  PubMed  Google Scholar 

  62. Aftab R, Ahsan S, Liaqat A, Safdar M, Chughtai MFJ, Nadeem M, Farooq MA, Mehmood T, Khaliq A (2023) Green-synthesized selenium nanoparticles using garlic extract and their application for rapid detection of salicylic acid in milk. Food Sci Technol. https://doi.org/10.1590/fst.67022

    Article  Google Scholar 

  63. Altuner EE, Tiri RNEH, Aygun A, Gulbagca F, Sen F, Iranbakhsh A, Karimi F, Vasseghian Y, Dragoi E-N (2022) Hydrogen production and photocatalytic activities from NaBH4 using trimetallic biogenic PdPtCo nanoparticles: development of machine learning model. Chem Eng Res Des 184:180–190

    Article  CAS  Google Scholar 

  64. Kumar B, Smita K, Cumbal L, Debut A, Angulo Y (2017) Biofabrication of copper oxide nanoparticles using Andean blackberry (Rubus glaucus Benth.) fruit and leaf. J Saudi Chem Soc 21:S475–S480

    Article  CAS  Google Scholar 

  65. Khan M, Khan M, Adil SF, Tahir MN, Tremel W, Alkhathlan HZ, Al-Warthan A, Siddiqui MRH (2013) Green synthesis of silver nanoparticles mediated by Pulicaria glutinosa extract. Int J Nanomed. https://doi.org/10.2147/IJN.S43309

    Article  Google Scholar 

  66. Mehata MS (2021) Green route synthesis of silver nanoparticles using plants/ginger extracts with enhanced surface plasmon resonance and degradation of textile dye. Mater Sci Eng B 273:115418

    Article  CAS  Google Scholar 

  67. Masum MMI, Siddiqa MM, Ali KA, Zhang Y, Abdallah Y, Ibrahim E, Qiu W, Yan C, Li B (2019) Biogenic synthesis of silver nanoparticles using Phyllanthus emblica fruit extract and its inhibitory action against the pathogen Acidovorax oryzae strain RS-2 of rice bacterial brown stripe. Front Microbiol 10:820

    Article  PubMed  PubMed Central  Google Scholar 

  68. David L, Moldovan B (2020) Green synthesis of biogenic silver nanoparticles for efficient catalytic removal of harmful organic dyes. Nanomaterials 10:202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Stevanović MS, Zvezdanović JB, Stanojević LP, Stanojević JS, Petrović SM, Cakić MD, Cvetković DJ (2019) Synthesis, characterization and antioxidant activity of silver nanoparticles stabilized by aqueous extracts of wild blackberry (Rubus spp.) and raspberry (Rubus idaeus L.) leaves. Adv Technol 8:47–58

    Article  Google Scholar 

  70. Cakić M, Glišić S, Cvetković D, Cvetinov M, Stanojević L, Danilović B, Cakić K (2018) Green synthesis, characterization and antimicrobial activity of silver nanoparticles produced from Fumaria officinalis L. plant extract. Colloid J 80:803–813

    Article  Google Scholar 

  71. Sreelekha E, George B, Shyam A, Sajina N, Mathew B (2021) A comparative study on the synthesis, characterization, and antioxidant activity of green and chemically synthesized silver nanoparticles. BioNanoScience 11:489–496

    Article  Google Scholar 

  72. Sajadi SM, Nasrollahzadeh M, Akbari R (2019) Cyanation of aryl and heteroaryl aldehydes using in-situ-synthesized Ag nanoparticles in Crocus sativus L. extract. ChemistrySelect 4:1127–1130

    Article  CAS  Google Scholar 

  73. Goyal RN, Gupta VK, Chatterjee S (2010) Voltammetric biosensors for the determination of paracetamol at carbon nanotube modified pyrolytic graphite electrode. Sens Actuators B 149:252–258

    Article  CAS  Google Scholar 

  74. Burc M, Köytepe S, Duran ST, Ayhan N, Aksoy B, Seçkin T (2020) Development of voltammetric sensor based on polyimide-MWCNT composite membrane for rapid and highly sensitive detection of paracetamol. Measurement 151:107103

    Article  Google Scholar 

  75. Özcan A, Şahin Y (2011) A novel approach for the determination of paracetamol based on the reduction of N-acetyl-p-benzoquinoneimine formed on the electrochemically treated pencil graphite electrode. Anal Chim Acta 685:9–14

    Article  PubMed  Google Scholar 

  76. Ensafi AA, Karimi-Maleh H, Mallakpour S, Hatami M (2011) Simultaneous determination of N-acetylcysteine and acetaminophen by voltammetric method using N-(3, 4-dihydroxyphenethyl)-3, 5-dinitrobenzamide modified multiwall carbon nanotubes paste electrode. Sens Actuators B 155:464–472

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fatemeh Karimi or Fatih Sen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimi, F., Altuner, E.E., Aygun, A. et al. Synthesis of Silver Nanoparticles by Biogenic Methods: Characterization and Development of a Sensor Sensible to Pharmaceutical Medicine Paracetamol. Top Catal 67, 585–593 (2024). https://doi.org/10.1007/s11244-023-01887-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-023-01887-4

Keywords

Navigation