Skip to main content

Advertisement

Log in

Recent developments in carbon nanomaterials-based electrochemical sensors for methyl parathion detection

  • Review Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Methyl parathion (MP), an organophosphorus insecticide, is commonly used in agricultural products for food preservation and pest control. Due to the severe threat it poses to food safety and the environment, monitoring MP residues has attracted much attention. Traditional spectroscopic and chromatographic methods have been used successfully to analyze MP in a wide range of samples; however, these approaches have several drawbacks, such as requiring specialized equipment, trained technicians, and extensive sample preparation time. Due to these restrictions, there is a growing demand for analysis methods that can reliably and quickly detect MP at trace quantities while also being quick, sensitive, and selective. Electrochemical sensors have emerged over the past few decades as a viable alternative to more time-consuming and laborious analysis methods for detecting MP. However, the performance of electrochemical sensors has been dramatically improved thanks to recent breakthroughs in nanoscience. This study offers an overview of the creation and operation of carbon nanomaterial-based electrochemical sensors (including carbon nanotubes (CNTs), graphene (Gr), and other carbon nanomaterials) to identify MP residues in waters, fruits, and vegetables. A brief discussion of the potential benefits, drawbacks, and future research prospects of MP electrochemical sensors based on carbon nanomaterials is also offered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

HAu NPs:

Hollow Au nanoparticles

GO NRs:

Graphene oxide nanoribbons

SWV:

Square wave voltammetry

CV:

Cyclic voltammetry

DPV:

Differential pulse voltammetry

β-CD:

β-cyclodextrin

N-Gr:

Nitrogen-doped graphene

BNQDs:

Boron nitride quantum dots

N-HG:

Nitrogen-doped holey graphene

PEDOT/YSZ@rGO/SS:

Poly(3,4-ethylenedioxythiophene)/yttrium-stabilized zirconia@rGO/stainless steel

MWCNTs:

Multi-walled carbon nanotubes

SWASV:

Square wave anodic stripping voltammetry

SH-β-CD:

Mono-6-thio-β-cyclodextrin

CP:

Carbon paper

CPE:

Carbon paste electrode

BODIPY:

Boron dipyrromethene

ZnPc:

Zinc (II) phthalocyanines

Iodo-Pc:

Three iodine

SubPc-Pc:

Subphthalocyanine

Hal:

Halloysite

EIS:

Electrochemical impedance spectroscopy

AdSV:

Adsorptive stripping voltammetric

ONCSs:

Nitrogen-doped carbon sheets

CB:

Carbon black

rGO:

Reduced graphene oxide

GO:

Graphene oxide

2D:

Two-dimensional

HPLC:

High-performance liquid chromatography

WHO:

World Health Organization

IL-Gr NSs:

Ionic liquid-Gr nanosheets

US-EPA:

United States Environmental Protection Agency

AChE:

Acetylcholinesterase

OPs:

Organophosphate pesticides

CNTs:

Carbon nanotubes

Gr:

Graphene

MP:

Methyl parathion

ErGO:

Electrochemically reduced graphene oxide

SPCEs:

Screen-printed carbon electrodes

GO NRs:

Graphene oxide nanoribbons

rGO/Pd-TPP:

The rGO/palladium tetraphenyl porphyrin

CoTCPP:

Meso-tetra (4-carboxyphenyl) cobalt porphyrin

TEOS:

Tetraethylorthosilicate

LSV:

Linear sweep voltammetry

GCE:

Glass carbon electrode

IL-Gr NSs:

Ionic liquid-Gr nanosheets

References

  1. H. Karimi-Maleh, F. Karimi, L. Fu, A.L. Sanati, M. Alizadeh, C. Karaman et al., Cyanazine herbicide monitoring as a hazardous substance by a DNA nanostructure biosensor. J. Hazard. Mater. 2022;423

  2. H. Mali, C.D. Shah, B.H. Raghunandan, A.S. Prajapati, D.H. Patel, U. Trivedi et al., Organophosphate pesticides an emerging environmental contaminant: Pollution, toxicity, bioremediation progress, and remaining challenges. J. Environ. Sci. 127, 234–250 (2023)

    Article  Google Scholar 

  3. J. Kaushal, M. Khatri, S.K. Arya, A treatise on Organophosphate pesticide pollution: current strategies and advancements in their environmental degradation and elimination. Ecotox Environ. Safe 2021;207

  4. C.A. Damalas, I.G. Eleftherohorinos, Pesticide exposure, Safety Issues, and Risk Assessment indicators. Int. J. Env Res. Pub He. 8(5), 1402–1419 (2011)

    Article  CAS  Google Scholar 

  5. P. Sengupta, R. Banerjee, Environmental toxins: alarming impacts of pesticides on male fertility. Hum. Exp. Toxicol. 33(10), 1017–1039 (2014)

    Article  PubMed  Google Scholar 

  6. I.C. Yadav, N.L. Devi, J.H. Syed, Z.N. Cheng, J. Li, G. Zhang et al., Current status of persistent organic pesticides residues in air, water, and soil, and their possible effect on neighboring countries: a comprehensive review of India. Sci. Total Environ. 511, 123–137 (2015)

    Article  CAS  PubMed  Google Scholar 

  7. M. Kermani, M. Dowlati, M. Gholami, H.R. Sobhi, A. Azari, A. Esrafili et al., A global systematic review, meta-analysis and health risk assessment on the quantity of Malathion, Diazinon and Chlorpyrifos in vegetables. Chemosphere 2021;270.

  8. Y.L. Wang, J. Jin, C.X. Yuan, F. Zhang, L.L. Ma, D.D. Qin et al., A novel electrochemical sensor based on zirconia/ordered macroporous polyaniline for ultrasensitive detection of pesticides. Analyst. 140(2), 560–566 (2015)

    Article  CAS  PubMed  Google Scholar 

  9. de P.R. Oliveira, C. Kalinke, J.L. Gogola, A.S. Mangrich, L.H. Marcolino, M.F. Bergamini, The use of activated biochar for development of a sensitive electrochemical sensor for determination of methyl parathion. J. Electroanal. Chem. 799, 602–608 (2017)

    Article  Google Scholar 

  10. L. Deng, J. Yuan, S.Q. Xie, H. Huang, R.R. Yue, J.K. Xu, A novel Pd-Fe3O4/PEDOT:PSS/nitrogen and sulfur doped-Ti3C2Tx frameworks as highly sensitive sensing platform toward parathion-methyl residue in nature. Electrochim. Acta 2022;407

  11. R. Kaur, S. Rana, K. Lalit, P. Singh, K. Kaur, Electrochemical detection of methyl parathion via a novel biosensor tailored on highly biocompatible electrochemically reduced graphene oxide-chitosan-hemoglobin coatings. Biosens. Bioelectron. 2020;167

  12. R.S. Chouhan, A.C. Vinayaka, M.S. Thakur, Chemiluminescence based technique for the detection of methyl parathion in water and fruit beverages. Anal. Methods-Uk. 2(7), 924–928 (2010)

    Article  CAS  Google Scholar 

  13. L. Chen, X.P. Dang, Y.H. Ai, H.X. Chen, Preparation of an acryloyl beta-cyclodextrin-silica hybrid monolithic column and its application in pipette tip solid-phase extraction and HPLC analysis of methyl parathion and fenthion. J. Sep. Sci. 2018;41(18)

  14. X.D. Wang, Y.Y. Yang, J. Dong, F. Bei, S.Y. Ai, Lanthanum-functionalized gold nanoparticles for coordination-bonding recognition and colorimetric detection of methyl parathion with high sensitivity. Sens. Actuat B-Chem. 204, 119–124 (2014)

    Article  CAS  Google Scholar 

  15. da D.F. Silva, F.E.P. Silva, F.G.S. Silva, G.S. Nunes, M. Badea, Direct determination of methyl parathion insecticide in rice samples by headspace solid-phase microextraction-gas chromatography-mass spectrometry. Pest Manag Sci. 71(11), 1497–1502 (2015)

    Article  PubMed  Google Scholar 

  16. Y.H. Yi, W. Zeng, G.B. Zhu, beta-cyclodextrin functionalized molybdenum disulfide quantum dots as nanoprobe for sensitive fluorescent detection of parathion-methyl. Talanta 2021;222.

  17. F.Y. Du, Y.S. Fung, Dual-opposite multi-walled carbon nanotube modified carbon fiber microelectrode for microfluidic chip-capillary electrophoresis determination of methyl parathion metabolites in human urine. Electrophoresis. 39(11), 1375–1381 (2018)

    Article  CAS  PubMed  Google Scholar 

  18. S. Duan, X.Y. Wu, Z.X. Shu, A.H. Xiao, B. Chai, F.W. Pi et al., Curcumin-enhanced MOF electrochemical sensor for sensitive detection of methyl parathion in vegetables and fruits. Microchem J. 2023;184

  19. A.H.A. Hassan, S.L. Moura, F.H.M. Ali, W.A. Moselhy, M.D.T. Sotomayor, M.I. Pividori, Electrochemical sensing of methyl parathion on magnetic molecularly imprinted polymer. Biosens. Bioelectron. 118, 181–187 (2018)

    Article  CAS  PubMed  Google Scholar 

  20. X.K. Tian, L. Liu, Y. Li, C. Yang, Z.X. Zhou, Y.L. Nie et al., Nonenzymatic electrochemical sensor based on CuO-TiO2 for sensitive and selective detection of methyl parathion pesticide in ground water. Sens. Actuat B-Chem. 256, 135–142 (2018)

    Article  CAS  Google Scholar 

  21. H. Karimi-Maleh, R. Darabi, F. Karimi, C. Karaman, S.A. Shahidi, N. Zare et al., State-of-art advances on removal, degradation and electrochemical monitoring of 4-aminophenol pollutants in real samples: a review. Environ. Res. 2023;222

  22. H. Karimi-Maleh, Y. Liu, Z. Li, R. Darabi, Y. Orooji, C. Karaman et al., Calf thymus ds-DNA intercalation with pendimethalin herbicide at the surface of ZIF-8/Co/rGO/C3N4/ds-DNA/SPCE; A bio-sensing approach for pendimethalin quantification confirmed by molecular docking study. Chemosphere 2023;332(138815)

  23. Z. Zhang, H. Karimi-Maleh, In situ synthesis of label-free electrochemical aptasensor-based sandwich-like AuNPs/PPy/Ti3C2Tx for ultrasensitive detection of lead ions as hazardous pollutants in environmental fluids. Chemosphere 2023:138302

  24. Z.X. Zhang, H. Karimi-Maleh, Label-free electrochemical aptasensor based on gold nanoparticles/titanium carbide MXene for lead detection with its reduction peak as index signal. Adv. Compos. Hybrid. Ma 2023;6(2)

  25. E.A. Songa, J.O. Okonkwo, Recent approaches to improving selectivity and sensitivity of enzyme-based biosensors for organophosphorus pesticides: a review. Talanta. 155, 289–304 (2016)

    Article  CAS  PubMed  Google Scholar 

  26. Y. Xie, Y.H. Yu, L.M. Lu, X. Ma, L. Gong, X.G. Huang et al., CuO nanoparticles decorated 3D graphene nanocomposite as non-enzymatic electrochemical sensing platform for malathion detection. J. Electroanal. Chem. 812, 82–89 (2018)

    Article  CAS  Google Scholar 

  27. E. Aboli, D. Jafari, H. Esmaeili, Heavy metal ions (lead, cobalt, and nickel) biosorption from aqueous solution onto activated carbon prepared from Citrus limetta leaves. Carbon Lett. 30(6), 683–698 (2020)

    Article  Google Scholar 

  28. J. Bae, J.Y. Hong, Fabrication of nitrogen-doped porous carbon nanofibers for heavy metal ions removal. Carbon Lett. 31(6), 1339–1347 (2021)

    Article  Google Scholar 

  29. M.F. Mubarak, A.M.G. Mohamed, M. Keshawy, T. Abd ElMoghny, N. Shehata, Adsorption of heavy metals and hardness ions from groundwater onto modified zeolite: batch and column studies. Alex Eng. J. 61(6), 4189–4207 (2022)

    Article  Google Scholar 

  30. R.M. Fathy, A.Y. Mahfouz, Eco-friendly graphene oxide-based magnesium oxide nanocomposite synthesis using fungal fermented by-products and gamma rays for outstanding antimicrobial, antioxidant, and anticancer activities. J. Nanostructure Chem. 11(2), 301–321 (2021)

    Article  CAS  Google Scholar 

  31. F. Ameen, K.S. Al-Maary, A. Almansob, S. AlNadhari, Antioxidant, antibacterial and anticancer efficacy of Alternaria chlamydospora-mediated gold nanoparticles. Appl. Nanosci. 2022

  32. N.C.Z. Moghadam, S.A. Jasim, F. Ameen, D.H. Alotaibi, M.A.L. Nobre, H. Sellami et al., Nickel oxide nanoparticles synthesis using plant extract and evaluation of their antibacterial effects on Streptococcus mutans. Bioproc Biosyst Eng. 45(7), 1201–1210 (2022)

    Article  CAS  Google Scholar 

  33. H.S. Yu, P. Li, L.W. Zhang, Y.X. Zhu, F.A. Al-Zahrani, K. Ahmed, Application of optical fiber nanotechnology in power communication transmission. Alex Eng. J. 59(6), 5019–5030 (2020)

    Article  Google Scholar 

  34. G. Gorle, A. Bathinapatla, S. Kanchi, Y.C. Ling, M. Rezakazemi, Low dimensional Bi2Se3 NPs/reduced graphene oxide nanocomposite for simultaneous detection of L-Dopa and acetaminophen in presence of ascorbic acid in biological samples and pharmaceuticals. J. Nanostructure Chem. 12(4), 513–528 (2022)

    Article  CAS  Google Scholar 

  35. M.J. Deka, D. Chowdhury, B.K. Nath, Recent development of modified fluorescent carbon quantum dots-based fluorescence sensors for food quality assessment. Carbon Lett. 32(5), 1131–1149 (2022)

    Article  Google Scholar 

  36. V. Kandathil, A.K. Veetil, A. Patra, A. Moolakkil, M. Kempasiddaiah, S.B. Somappa et al., A green and sustainable cellulosic-carbon-shielded Pd-MNP hybrid material for catalysis and energy storage applications. J. Nanostructure Chem. 11(3), 395–407 (2021)

    Article  CAS  Google Scholar 

  37. H. Karimi-Maleh, C. Karaman, O. Karaman, F. Karimi, Y. Vasseghian, L. Fu et al., Nanochemistry approach for the fabrication of Fe and N co-decorated biomass-derived activated carbon frameworks: a promising oxygen reduction reaction electrocatalyst in neutral media. J. Nanostructure Chem. 12(3), 429–439 (2022)

    Article  CAS  Google Scholar 

  38. Z.L. Deng, Z.X. Wu, M. Alizadeh, H.C. Zhang, Y.B. Chen, C. Karaman, Electrochemical monitoring of 4-chlorophenol as a water pollutant via carbon paste electrode amplified with Fe3O4 incorporated cellulose nanofibers (CNF). Environ. Res. 2023;219

  39. X. Wang, C. Karaman, Y.L. Zhang, C.L. Xia, Graphene oxide/cellulose nanofibril composite: a high-performance catalyst for the fabrication of an electrochemical sensor for quantification of p -nitrophenol, a hazardous water pollutant. Chemosphere 2023;331.

  40. F. Ameen, Y. Hamidian, R. Mostafazadeh, R. Darabi, N. Erk, M.A. Islam et al., A novel atropine electrochemical sensor based on silver nano particle-coated Spirulina platensis multicellular blue-green microalga. Chemosphere 2023:138180

  41. S.M. El-Sheikh, D.I. Osman, O.I. Ali, W.G. Shousha, M.A. Shoeib, S.M. Shawky et al., A novel Ag/Zn bimetallic MOF as a superior sensitive biosensing platform for HCV-RNA electrochemical detection. Appl. Surf. Sci. 2021;562

  42. R.M. Huang, D. Liao, S.S. Chen, J.G. Yu, X.Y. Jiang, A strategy for effective electrochemical detection of hydroquinone and catechol: decoration of alkalization-intercalated Ti3C2 with MOF-derived N-doped porous carbon. Sens. Actuat B-Chem 2020;320

  43. K. Kunpatee, S. Traipop, O. Chailapakul, S. Chuanuwatanakul, Simultaneous determination of ascorbic acid, dopamine, and uric acid using graphene quantum dots/ionic liquid modified screen-printed carbon electrode. Sens. Actuat B-Chem 2020;314

  44. S. Mohamrnadi, H. Beitollahi, A. Mohadesi, Electrochemical Behaviour of a modified Carbon Nanotube Paste Electrode and its application for simultaneous determination of Epinephrine, Uric Acid and Folic Acid. Sens. Lett. 11(2), 388–394 (2013)

    Article  Google Scholar 

  45. N.F. Suhaimi, S.N.A. Baharin, N.A. Jamion, Z.M. Zain, K.P. Sambasevam, Polyaniline-chitosan modified on screen-printed carbon electrode for the electrochemical detection of perfluorooctanoic acid. Microchem J. 2023;188

  46. S. Tajik, H. Beitollahi, H.W. Jang, M. Shokouhimehr, A screen printed electrode modified with Fe3O4@polypyrrole-Pt core-shell nanoparticles for electrochemical detection of 6-mercaptopurine and 6-thioguanine. Talanta 2021;232.

  47. M. Pirzada, Z. Altintas, Nanomaterials for Healthcare Biosensing Applications. Sensors-Basel 2019;19(23)

  48. J.M. Liu, K.D. Lu, F.C. Gao, L. Zhao, H. Li, Y.Y. Jiang, Multifunctional MoS2 composite nanomaterials for drug delivery and synergistic photothermal therapy in cancer treatment. Ceram. Int. 48(15), 22378–22386 (2022)

    Article  CAS  Google Scholar 

  49. S.A.H. Martinez, E.M. Melchor-Martinez, J.A.R. Hernandez, R. Parra-Saldivar, H.M.N. Iqbal, Magnetic nanomaterials assisted nanobiocatalysis systems and their applications in biofuels production. Fuel 2022;312

  50. S. Murali, P.K. Dammala, B. Rani, R. Santhosh, C. Jadhao, N.K. Sahu, Polyol mediated synthesis of anisotropic ZnO nanomaterials and composite with rGO: application towards hybrid supercapacitor. J. Alloy Compd. 2020;844

  51. A. Philip, A.R. Kumar, The performance enhancement of surface plasmon resonance optical sensors using nanomaterials: a review. Coordin Chem. Rev. 2022;458

  52. D.B. Zhang, R. Yin, Y.J. Zheng, Q.M. Li, H. Liu, C.T. Liu et al., Multifunctional MXene/CNTs based flexible electronic textile with excellent strain sensing, electromagnetic interference shielding and Joule heating performances. Chem. Eng. J. 2022;438

  53. T. Zhao, J.K. Gao, F. Wu, P.P. He, Y.W. Li, J.M. Yao, Highly active Cobalt/Tungsten Carbide@N-Doped porous Carbon Nanomaterials Derived from Metal-Organic Frameworks as Bifunctional catalysts for overall water splitting. Energy Technol-Ger 2019;7(4)

  54. B. Ahmed, A.M. Elgorban, A.H. Bahkali, J. Lee, A. Syed, SPR based gold nano-probe as optical sensor for cysteine detection via plasmonic enhancement in the presence of Cr3+. Spectrochim Acta A 2022;265

  55. H. Beitollahi, H.M. Moghaddam, S. Tajik, Voltammetric determination of Bisphenol A in Water and Juice using a lanthanum (III)-Doped cobalt (II,III) Nanocube Modified Carbon screen-printed Electrode. Anal. Lett. 52(9), 1432–1444 (2019)

    Article  CAS  Google Scholar 

  56. J.M. Evans, K.S. Lee, E.X. Yan, A.C. Thompson, M.B. Morla, M.C. Meier et al., Demonstration of a sensitive and stable Chemical Gas Sensor based on Covalently Functionalized MoS2. Acs Mater. Lett. 4(8), 1475–1480 (2022)

    Article  CAS  Google Scholar 

  57. R.S. Karatekin, S. Kaplan, S.I. Ozmen, M.K. Dudukcu, N-doped reduced graphene oxide/ZnO/nano-Pt composites for hydrogen peroxide sensing. Mater. Chem. Phys. 2022;280

  58. R. Kumar, S. Pal, Y.K. Prajapati, S. Kumar, J.P. Saini, Sensitivity improvement of a MXene- immobilized SPR Sensor with Ga-Doped-ZnO for Biomolecules Detection. Ieee Sens. J. 22(7), 6536–6543 (2022)

    Article  CAS  Google Scholar 

  59. R.M. Sun, R.J. Lv, Y. Zhang, T. Du, Y.H. Li, L.X. Chen et al., Colorimetric sensing of glucose and GSH using core-shell Cu/Au nanoparticles with peroxidase mimicking activity. Rsc Adv. 12(34), 21875–21884 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. S. Tajik, Y. Orooji, F. Karimi, Z. Ghazanfari, H. Beitollahi, M. Shokouhimehr et al., High performance of screen-printed graphite electrode modified with Ni-Mo-MOF for voltammetric determination of amaranth. J. Food Meas. Charact. 15(5), 4617–4622 (2021)

    Article  Google Scholar 

  61. V. Nagal, T. Tuba, V. Kumar, S. Alam, A. Ahmad, M.B. Alshammari et al., A non-enzymatic electrochemical sensor composed of nano-berry shaped cobalt oxide nanostructures on a glassy carbon electrode for uric acid detection. New. J. Chem. 46(25), 12333–12341 (2022)

    Article  CAS  Google Scholar 

  62. R. Jiang, L. Chen, X.M. Bai, J.H. Ye, Y. Luo, L.P. Wang et al., Zn-doped NiCo2O4 as modified Electrode Nanomaterials for enhanced Electrochemical Detection performance of Cu(II). Electroanal. 34(12), 1844–1853 (2022)

    Article  CAS  Google Scholar 

  63. H. Beitollahi, I. Sheikhshoaie, Novel nanostructure-based electrochemical sensor for simultaneous determination of dopamine and acetaminophen. Mat. Sci. Eng. C-Mater. 32(2), 375–380 (2012)

    Article  CAS  Google Scholar 

  64. H. Beitollahi, F.G. Nejad, Z. Dourandish, S. Tajik, A novel voltammetric amaranth sensor based on screen printed electrode modified with polypyrrole nanotubes. Environ. Res. 2022;214

  65. U. Rajaji, P.S. Ganesh, S.Y. Kim, M. Govindasamy, R.A. Alshgari, T.Y. Liu, MoS2 Sphere/2D S-Ti3C2 MXene Nanocatalysts on Laser-Induced Graphene Electrodes for Hazardous Aristolochic Acid and Roxarsone Electrochemical Detection. Acs Appl. Nano Mater. 5(3), 3252–3264 (2022)

    Article  CAS  Google Scholar 

  66. H.S. Yang, Y. Hu, X.X. Yin, J.Q. Huang, C.L. Qiao, Z.K. Hu et al., A disposable and sensitive non-enzymatic glucose sensor based on a 3D-Mn-doped NiO nanoflower-modified flexible electrode. Analyst. 148(1), 153–162 (2022)

    Article  PubMed  Google Scholar 

  67. S. Tajik, M.R. Aflatoonian, H. Beitollahi, I.S. Shoaie, Z. Dourandish, G.N. Fariba et al., Electrocatalytic oxidation and selective voltammetric detection of methyldopa in the presence of hydrochlorothiazide in real samples. Microchem J. 2020;158

  68. G. Speranza, Carbon Nanomaterials: synthesis, functionalization and sensing applications. Nanomaterials-Basel 2021;11(4)

  69. Y.N. Zhang, Q.Y. Niu, X.T. Gu, N. Yang, G.H. Zhao, Recent progress on carbon nanomaterials for the electrochemical detection and removal of environmental pollutants. Nanoscale. 11(25), 11992–12014 (2019)

    Article  CAS  PubMed  Google Scholar 

  70. H. Beitollahi, J.B. Raoof, R. Hosseinzadeh, Electroanalysis and simultaneous determination of 6-Thioguanine in the Presence of Uric Acid and Folic Acid using a modified Carbon Nanotube Paste Electrode. Anal. Sci. 27(10), 991–997 (2011)

    Article  CAS  PubMed  Google Scholar 

  71. J. Chen, Y. Chen, S.Y. Li, J. Yang, J.B. Dong, X.Q. Lu, MXene/CNTs/Cu-MOF electrochemical probe for detecting tyrosine. Carbon. 199, 110–118 (2022)

    Article  CAS  Google Scholar 

  72. J.X. Chen, N.Z. Shang, X. Lan, A. Nsabimana, Z.W. Che, Y.F. Zhang, Facile preparation of ternary heterostructured Au/polyoxometalate/nitrogen- doped hollow carbon sphere nanohybrids for the acetaminophen detection. Colloid Surf. A 2022;647

  73. Z.D. Mu, J.M. Tian, J. Wang, J. Zhou, L.J. Bai, A new electrochemical aptasensor for ultrasensitive detection of endotoxin using Fe-MOF and AgNPs decorated P-N-CNTs as signal enhanced indicator. Appl. Surf. Sci. 2022;573

  74. F.G. Nejad, H. Beitollahi, R. Alizadeh, Sensitive determination of hydroxylamine on ZnO Nanorods/Graphene Oxide Nanosheets Modified Graphite screen printed. Anal. Bioanal Electro. 9(2), 134–144 (2017)

    CAS  Google Scholar 

  75. Q.T. Nguyen, T.G. Le, P. Bergonzo, Q.T. Tran, One-step fabrication of nickel-electrochemically reduced Graphene Oxide Nanocomposites Modified Electrodes and Application to the detection of Sunset Yellow in Drinks. Appl. Sci-Basel 2022;12(5)

  76. T.T. Zhai, R. Li, N.N. Zhang, L.X. Zhao, M.T. He, L. Tan, Simultaneous detection of Sulfite and Nitrite on Graphene Oxide Nanoribbons-gold nanoparticles Composite Modified Electrode. Electroanal. 34(1), 103–110 (2022)

    Article  CAS  Google Scholar 

  77. K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone et al., Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146(9–10), 351–355 (2008)

    Article  CAS  Google Scholar 

  78. K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim et al., Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature. 457(7230), 706–710 (2009)

    Article  CAS  PubMed  Google Scholar 

  79. W.G. Ma, Y.J. Liu, S. Yan, T.T. Miao, S.Y. Shi, Z. Xu et al., Chemically doped macroscopic graphene fibers with significantly enhanced thermoelectric properties. Nano Res. 11(2), 741–750 (2018)

    Article  CAS  Google Scholar 

  80. F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson et al., Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6(9), 652–655 (2007)

    Article  CAS  PubMed  Google Scholar 

  81. Y.W. Zhu, S. Murali, W.W. Cai, X.S. Li, J.W. Suk, J.R. Potts et al., Graphene and Graphene Oxide: Synthesis, Properties, and Applications (vol 22, pg 3906, 2010). Adv Mater 2010;22(46):5226-

  82. R. Suresh, S. Rajendran, P.S. Kumar, T.K.A. Hoang, M. Soto-Moscoso, A.A. Jalil, Recent developments on graphene and its derivatives based electrochemical sensors for determinations of food contaminants. Food Chem. Toxicol. 2022;165

  83. J.H. Xu, Y.Z. Wang, S.S. Hu, Nanocomposites of graphene and graphene oxides: synthesis, molecular functionalization and application in electrochemical sensors and biosensors. A review. Microchim. Acta. 184(1), 1–44 (2017)

    Article  CAS  Google Scholar 

  84. H.L. Ma, L. Wang, Z.G. Liu, Y.J. Guo, Ionic liquid-graphene hybrid nanosheets-based electrochemical sensor for sensitive detection of methyl parathion. Int. J. Environ. an. Ch. 96(2), 161–172 (2016)

    Article  CAS  Google Scholar 

  85. B. Song, W.J. Cao, Y.Z. Wang, A methyl parathion electrochemical sensor based on Nano-TiO2, graphene composite film modified electrode. Fuller. Nanotub Car N. 24(7), 435–440 (2016)

    Article  CAS  Google Scholar 

  86. J. Fu, X.H. Tan, Y.H. Li, X.J. Song, A nanosilica/exfoliated graphene composite film-modified electrode for sensitive detection of methyl parathion. Chin. Chem Lett. 27(9), 1541–1546 (2016)

    Article  CAS  Google Scholar 

  87. F.M. Liu, Y.Q. Du, Y.M. Cheng, W. Yin, C.J. Hou, D.Q. Huo et al., A selective and sensitive sensor based on highly dispersed cobalt porphyrin-Co3O4-graphene oxide nanocomposites for the detection of methyl parathion. J. Solid State Electr. 20(3), 599–607 (2016)

    Article  CAS  Google Scholar 

  88. S. Sakthinathan, S. Kubendhiran, S.M. Chen, C. Karuppiah, T.W. Chiu, Novel Bifunctional Electrocatalyst for ORR Activity and Methyl Parathion Detection based on reduced Graphene Oxide/Palladium Tetraphenylporphyrin Nanocomposite. J. Phys. Chem. C 121(26), 14096–14107 (2017)

    Article  CAS  Google Scholar 

  89. M. Govindasamy, S. Sakthinathan, S.M. Chen, T.W. Chiu, A. Sathiyan, J.P. Merlin, Reduced Graphene Oxide supported Cobalt Bipyridyl Complex for Sensitive Detection of Methyl Parathion in Fruits and vegetables. Electroanal. 29(8), 1950–1960 (2017)

    Article  CAS  Google Scholar 

  90. M. Govindasamy, S.M. Chen, V. Mani, M. Akilarasan, S. Kogularasu, B. Subramani, Nanocomposites composed of layered molybdenum disulfide and graphene for highly sensitive amperometric determination of methyl parathion. Microchim. Acta. 184(3), 725–733 (2017)

    Article  CAS  Google Scholar 

  91. M. Govindasamy, R. Umamaheswari, S.M. Chen, V. Mani, C. Su, Graphene Oxide Nanoribbons Film modified screen-printed Carbon Electrode for Real-Time detection of Methyl Parathion in Food samples. J. Electrochem. Soc. 164(9), B403–B8 (2017)

    Article  CAS  Google Scholar 

  92. M. Govindasamy, V. Mani, S.M. Chen, T.W. Chen, A.K. Sundramoorthy, Methyl parathion detection in vegetables and fruits using silver@graphene nanoribbons nanocomposite modified screen printed electrode. Sci. Rep-Uk 2017;7

  93. J.X. Lu, Y.F. Sun, G.I.N. Waterhouse, Z.X. Xu, A voltammetric sensor based on the use of reduced graphene oxide and hollow gold nanoparticles for the quantification of methyl parathion and parathion in agricultural products. Adv. Polym. Tech. 37(8), 3629–3638 (2018)

    Article  CAS  Google Scholar 

  94. X.P. Tan, Y. Liu, T.Y. Zhang, S.S. Luo, X. Liu, H.X. Tian et al., Ultrasensitive electrochemical detection of methyl parathion pesticide based on cationic water-soluble pillar[5]arene and reduced graphene nanocomposite. Rsc Adv. 9(1), 345–353 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. K.D. Caetano, da D.S. Rosa, T.M. Pizzolato, dos P.A.M. Santos, R. Hinrichs, E.V. Benvenutti et al., MWCNT/zirconia porous composite applied as electrochemical sensor for determination of methyl parathion. Micropor Mesopor Mat 2020;309

  96. X.Q. Hou, X.W. Liu, Z. Li, J. Zhang, G.B. Dua, X. Ran et al., Electrochemical determination of methyl parathion based on pillar[5]arene@AuNPs@reduced graphene oxide hybrid nanomaterials. New. J. Chem. 43(33), 13048–13057 (2019)

    Article  CAS  Google Scholar 

  97. X.Y. Dong, F. Wang, J. Ma, B.J. Qiu, Preparation of an Electrochemical Sensor based on a Nitrogen-Doped Graphene Modified Electrode and its application for the detection of Methyl Parathion. Int. J. Electrochem. Sc. 14(12), 11679–11691 (2019)

    CAS  Google Scholar 

  98. M.L. Yola, Electrochemical activity enhancement of monodisperse boron nitride quantum dots on graphene oxide: its application for simultaneous detection of organophosphate pesticides in real samples. J. Mol. Liq. 277, 50–57 (2019)

    Article  CAS  Google Scholar 

  99. R. Thangarasu, V.D. Victor, M. Alagumuthu, MnO2/PANI/rGO-A modified Carbon Electrode based Electrochemical Sensor to detect Organophosphate Pesticide in Real Food samples. Anal. Bioanal Electro. 11(4), 427–447 (2019)

    CAS  Google Scholar 

  100. N. Gao, C.H. He, M.Y. Ma, Z.W. Cai, Y. Zhou, G. Chang et al., Electrochemical co-deposition synthesis of Au-ZrO2-graphene nanocomposite for a nonenzymatic methyl parathion sensor. Anal. Chim. Acta. 1072, 25–34 (2019)

    Article  CAS  PubMed  Google Scholar 

  101. T. Ramachandran, V.V. Dhayabaran, Utilization of a MnO2/polythiophene/rGO nanocomposite modified glassy carbon electrode as an electrochemical sensor for methyl parathion. J. Mater. Sci-Mater El. 30(13), 12315–12327 (2019)

    Article  CAS  Google Scholar 

  102. R. Shanmugam, S. Manavalan, S.M. Chen, M. Keerthi, L.H. Lin, Methyl Parathion Detection using SnS2/N, S-Co-Doped reduced Graphene Oxide Nanocomposite. Acs Sustain. Chem. Eng. 8(30), 11194–11203 (2020)

    Article  CAS  Google Scholar 

  103. S. Manavalan, P. Veerakumar, S.M. Chen, K.C. Lin, Three-dimensional zinc oxide nanostars anchored on graphene oxide for voltammetric determination of methyl parathion. Microchim. Acta 2020;187(1)

  104. Z.F. Chen, Y. Zhang, Y.Q. Yang, X.R. Shi, L. Zhang, G.W. Jia, Hierarchical nitrogen-doped holey graphene as sensitive electrochemical sensor for methyl parathion detection. Sens. Actuat B-Chem 2021;336

  105. R. Nehru, Y.F. Hsu, S.F. Wang, C.D. Dong, M. Govindasamy, M.A. Habila et al., Graphene oxide@Ce-doped TiO2 nanoparticles as electrocatalyst materials for voltammetric detection of hazardous methyl parathion. Microchim. Acta 2021;188(6)

  106. D. Ilager, N.P. Shetti, Y. Foucaud, M. Badawi, T.M. Aminabhavi, Graphene/g-carbon nitride (GO/g-C3N4) nanohybrids as a sensor material for the detection of methyl parathion and carbendazim. Chemosphere 2022;292.

  107. Y. Zhao, Y.Z. Ma, R.Y. Zhou, Y. He, Y.T. Wu, Y.H. Yi et al., Highly sensitive electrochemical detection of paraoxon ethyl in water and fruit samples based on defect-engineered graphene nanoribbons modified electrode. J. Food Meas. Charact. 16(4), 2596–2603 (2022)

    Article  Google Scholar 

  108. Y.C. Lv, T. Yang, X.M. Hou, Z. Fang, K. Rajan, Y. Di et al., Zirconia nanofibers-loaded reduced graphene oxide fabrication for specific electrochemical detection of methyl parathion. J. Alloy Compd. 2022;904

  109. A. Mejri, A. Mars, H. Elfil, A.H. Hamzaoui, Reduced graphene oxide nanosheets modified with nickel disulfide and curcumin nanoparticles for non-enzymatic electrochemical sensing of methyl parathion and 4-nitrophenol. Microchim. Acta 2019;186(11)

  110. S. Iijima, Helical microtubules of Graphitic Carbon. Nature. 354(6348), 56–58 (1991)

    Article  CAS  Google Scholar 

  111. G.K. Cho, S. Azzouzi, G. Zucchi, B. Lebental, Electrical and Electrochemical Sensors based on Carbon Nanotubes for the monitoring of Chemicals in Water-A Review. Sensors-Basel 2022;22(1)

  112. J.C. Kilele, R. Chokkareddy, G.G. Redhi, Ultra-sensitive electrochemical sensor for fenitrothion pesticide residues in fruit samples using IL@CoFe(2)O(4)NPs@MWCNTs nanocomposite. Microchem J. 2021;164

  113. H.S. Magar, R.Y.A. Hassan, M.N. Abbas, Non-enzymatic disposable electrochemical sensors based on CuO/Co3O4@MWCNTs nanocomposite modified screen-printed electrode for the direct determination of urea. Sci. Rep-Uk 2023;13(1)

  114. M. Shalauddin, S. Akhter, W.J. Basirun, S. Bagheri, N.S. Anuar, M.R. Johan, Hybrid nanocellulose/f-MWCNTs nanocomposite for the electrochemical sensing of diclofenac sodium in pharmaceutical drugs and biological fluids. Electrochim. Acta. 304, 323–333 (2019)

    Article  CAS  Google Scholar 

  115. B.R. Tao, W.B. Yang, F.J. Miao, Y. Zang, P.K. Chu, A sensitive enzyme-free electrochemical sensor composed of Co3O4/ CuO@MWCNTs nanocomposites for detection of L-lactic acid in sweat solutions. Mater. Sci. Eng. B-Adv 2023;288

  116. X.C. Fu, J. Zhang, Y.Y. Tao, J. Wu, C.G. Xie, L.T. Kong, Three-dimensional mono-6-thio-beta-cyclodextrin covalently functionalized gold nanoparticle/single-wall carbon nanotube hybrids for highly sensitive and selective electrochemical determination of methyl parathion. Electrochim. Acta. 153, 12–18 (2015)

    Article  CAS  Google Scholar 

  117. X.Y. Yue, P.X. Han, W.X. Zhu, J.L. Wang, L.X. Zhang, Facile and sensitive electrochemical detection of methyl parathion based on a sensing platform constructed by the direct growth of carbon nanotubes on carbon paper. Rsc Adv. 6(63), 58771–58779 (2016)

    Article  CAS  Google Scholar 

  118. R.Q. Liu, Y.S. Wang, D.D. Li, L. Dong, B. Li, B.B. Liu et al., A simple, low-cost and efficient beta-CD/MWCNTs/CP-based Electrochemical Sensor for the Rapid and Sensitive Detection of Methyl Parathion. Int. J. Electrochem. Sc. 14(10), 9785–9795 (2019)

    Article  CAS  Google Scholar 

  119. B. Koksoy, D. Akyuz, A. Senocak, M. Durmus, E. Demirbas, Sensitive, simple and fast voltammetric determination of pesticides in juice samples by novel BODIPY-phthalocyanine-SWCNT hybrid platform. Food Chem. Toxicol. 2021;147

  120. B. Koksoy, D. Akyuz, A. Senocak, M. Durmus, E. Demirbas, Novel SWCNT-hybrid nanomaterial functionalized with subphthalocyanine substituted asymmetrical zinc (II) phthalocyanine conjugate: design, synthesis, characterization and sensor properties for pesticides. Sens. Actuat B-Chem 2021;329

  121. H.Y. Zhao, H.N. Ma, X.G. Li, B.B. Liu, R.Q. Liu, S. Komarneni, Nanocomposite of halloysite nanotubes/multi-walled carbon nanotubes for methyl parathion electrochemical sensor application. Appl. Clay Sci. 2021;200

  122. Y. Zhou, T.T. Wu, H.B. Zhang, M.Y. Zhao, Y.S. Shen, G. Zhu et al., Surface optimization of glassy Carbon Electrode with Graphitized and Carboxylated Multi-Walled Carbon Nanotubes@beta-Cyclodextrin Nanocomposite for Electrochemical determination of Methyl Parathion. Int. J. Electrochem. Sc 2022;17(5)

  123. N. Gissawong, S. Srijaranai, S. Nanan, K. Mukdasai, P. Uppachai, N. Teshima et al., Electrochemical detection of methyl parathion using calix[6]arene/bismuth ferrite/multiwall carbon nanotube-modified fluorine-doped tin oxide electrode. Microchim. Acta 2022;189(12)

  124. G. Zhu, Y.Q. Zhang, Y.H. Liu, M.M. Guo, M.M. Zhang, T.T. Wu et al., Fabrication of Methyl Parathion Electrochemical Sensor based on modified glassy Carbon Electrode with Graphitized and Carboxylated Multi-Walled Carbon Nanotubes decorated with Zirconia Nanoparticles. Int. J. Electrochem. Sc 2022;17(6)

  125. M. Guo, G. Zhu, Y. Liu, M. Zhao, Y. Shen, Y. Zhou et al., Functionalised multi-walled carbon nanotubes-based electrochemical sensor: synergistic effect of graphitisation and carboxylation on detection performance of methyl parathion. Mater. Res. Innov. 26, 324–330 (2022)

    Article  CAS  Google Scholar 

  126. P. ReddyPrasad, E.B. Naidoo, N.Y. Sreedhar, Electrochemical preparation of a novel type of C-dots/ZrO2 nanocomposite onto glassy carbon electrode for detection of organophosphorus pesticide. Arab. J. Chem. 12(8), 2300–2309 (2019)

    Article  CAS  Google Scholar 

  127. H.Y. Zhao, B.B. Liu, Y.F. Li, B. Li, H.N. Ma, S. Komarneni, One-pot green hydrothermal synthesis of bio-derived nitrogen-doped carbon sheets embedded with zirconia nanoparticles for electrochemical sensing of methyl parathion. Ceram. Int. 46(12), 19713–19722 (2020)

    Article  CAS  Google Scholar 

  128. H.Y. Zhao, B. Li, R.Q. Liu, Y.Q. Chang, H.L. Wang, L. Zhou et al., Ultrasonic-assisted preparation of halloysite nanotubes/zirconia/carbon black nanocomposite for the highly sensitive determination of methyl parathion. Mat. Sci. Eng. C-Mater 2021;123

  129. R.X. Li, M.H. Shang, T. Zhe, M.Y. Li, F.E. Bai, Z.H. Xu et al., Sn/MoC@NC hollow nanospheres as Schottky catalyst for highly sensitive electrochemical detection of methyl parathion. J. Hazard. Mater. 2023;447

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hassan Karimi-Maleh, Dragoi Elena Niculina or Emine Selda Gündüz.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimi-Maleh, H., Darabi, R., Baghayeri, M. et al. Recent developments in carbon nanomaterials-based electrochemical sensors for methyl parathion detection. Food Measure 17, 5371–5389 (2023). https://doi.org/10.1007/s11694-023-02050-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-023-02050-z

Keywords

Navigation