Skip to main content
Log in

Green Synthesis of Silver Oxide Nanoparticles Using Plectranthus amboinicus and Solanum trilobatum Extracts as an Eco-friendly Approach: Characterization and Antibacterial Properties

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Silver Oxide nanoparticles (AgONPs) have been revealed to have many applications, including antibacterial behavior. However, the conventional methods for synthesizing AgO NPs often use toxic chemicals that may be detrimental to human health and environmental factors. The crystalline structure and size of obtained AgO NPs were confirmed by Powder X-ray diffraction analysis with 35–70 nm. Functional groups have been identified in Fourier transform infrared spectroscopy. The result of Energy Dispersive X-ray Spectroscopy confirmed the presence of the elements in the synthesized AgO NPs. The energy band gap is determined using UV–visible spectroscopy. Morphological examination of prepared AgO NPs, comprising spherical and rod-like structures, was performed using a Transmission, and scanning electron microscope. The antibacterial activity was evaluated using Gram-negative (Klebsiella pneumonia, Escherichia coli) and Gram-positive (Staphylococcus aureus, Bacillus cereus) bacteria from Agar Well Diffusion Method. The results show that the green synthesis of AgO NPs have better antibacterial activity. The inhibition zone diameter were observedfor all microorganisms. The green synthesis of AgO NPs from herbal plant leaf extracts is a promising method for developing safe and effective antibacterial agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. F.A. AlMalki, K.S. Khashan, M.S. Jabir, A.A. Hadi, G.M. Sulaiman, F.A. Abdulameer, S. Albukhaty, H. Al-Karagoly, J. Albaqami, Eco-friendly synthesis of carbon nanoparticles by laser ablation in water and evaluation of their antibacterial activity. J. Nanomater. 2022, 1–8 (2022)

    Article  Google Scholar 

  2. U.E.S. Amjad, L. Sherin, M.F. Zafar et al., Comparative study on the catalytic degradation of methyl orange by silver nanoparticles synthesized by solution combustion and green synthesis method. Arab. J. Sci. Eng. 44, 9851–9857 (2019). https://doi.org/10.1007/s13369-019-03994-5

    Article  CAS  Google Scholar 

  3. P. Sasikumar, M.S. Revathy, S. Nithiyanantham, Cd(OH)2 and CdO: structural, optical, electron density distribution analysis with antibacterial assay. Eur. Phys. J. Plus 137, 294 (2022). https://doi.org/10.1140/epjp/s13360-022-02492-2

    Article  CAS  Google Scholar 

  4. M.S. Jabir et al., Gold nanoparticles loaded TNF-α and CALNN peptide as a drug delivery system and promising therapeutic agent for breast cancer cells. Mater. Technol. 37, 3152–3166 (2022)

    Article  CAS  Google Scholar 

  5. O. Messaoudi, I. Benamar, A. Azizi, S. Albukhaty, Y. Khane, G.M. Sulaiman, M.M. Salem-Bekhit, K. Hamdi, S. Ghoummid, A. Zoukel et al., Characterization of silver carbonate nanoparticles biosynthesized using marine Actinobacteria and exploring of their antimicrobial and antibiofilm activity. Mar. Drugs 21(10), 536 (2023). https://doi.org/10.3390/md21100536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. A.A. Alyamani, S. Albukhaty, S. Aloufi, F.A. AlMalki, H. Al-Karagoly, G.M. Sulaiman, Green fabrication of zinc oxide nanoparticles using phlomis leaf extract: characterization and in vitro evaluation of cytotoxicity and antibacterial properties. Molecules 26(20), 6140 (2021). https://doi.org/10.3390/molecules26206140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. S. Albukhaty, L. Al-Bayati, H. Al-Karagoly, S. Al-Musawi, Preparation and characterization of titanium dioxide nanoparticles and in vitro investigation of their cytotoxicity and antibacterial activity against Staphylococcus aureus and Escherichia coli. Anim. Biotechnol. 28, 1–7 (2020). https://doi.org/10.1080/10495398.2020.1842751

    Article  CAS  Google Scholar 

  8. D. Nadhiya, A. Kala, V. Sandhiya et al., Influence of annealing temperature on structural, morphological, optical, magnetic, and antimicrobial properties of zinc ferrite nanoparticles. Plasmonics (2023). https://doi.org/10.1007/s11468-023-02098-z

    Article  Google Scholar 

  9. A.K. Alzubaidi, W.J. Al-Kaabi, A.A. Ali, S. Albukhaty, H. Al-Karagoly, G.M. Sulaiman, M. Asiri et al., Green synthesis and characterization of silver nanoparticles using flaxseed extract and evaluation of their antibacterial and antioxidant activities. Appl. Sci. 13(4), 2182 (2023). https://doi.org/10.3390/app13042182

    Article  CAS  Google Scholar 

  10. A.A. Mohammed, K.H. Jawad, S. Çevik et al., Investigating the antimicrobial, antioxidant, and anticancer effects of Elettaria cardamomum seed extract conjugated to green synthesized silver nanoparticles by laser ablation. Plasmonics (2023). https://doi.org/10.1007/s11468-023-02067-6

    Article  Google Scholar 

  11. S. Gurunathan, K. Kalishwaralal, R. Vaidyanathan, D. Venkataraman, S.R. Pandian, J. Muniyandi, N. Hariharan, S.H. Eom, Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids Surf. B 74(1), 328–335 (2009). https://doi.org/10.1016/j.colsurfb.2009.07.048

    Article  CAS  Google Scholar 

  12. S. Simon, N.R.S. Sibuyi, A.O. Fadaka, S. Meyer, J. Josephs, M.O. Onani, M. Meyer, A.M. Madiehe, Biomedical applications of plant extract-synthesized silver nanoparticles. Biomedicines 10(11), 2792 (2022). https://doi.org/10.3390/biomedicines10112792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. S. Karthikeyan, V.T. Srisuvetha, S. Vadivel, P. Sathya, E.E.S. Massou, V.R.M. Reddy et al., Study on preparation and performance of electrochemical supercapacitor based on La2O3/CNTs composites for energy storage applications. Chem. Phys. 568, 111849 (2023)

    Article  CAS  Google Scholar 

  14. S. Iravani, H. Korbekandi, S.V. Mirmohammadi, B. Zolfaghari, Synthesis of silver nanoparticles: chemical, physical and biological methods. Res. Pharm. Sci. 9(6), 385–406 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  15. M. Alhujaily, S. Albukhaty, M. Yusuf, M.K.A. Mohammed, G.M. Sulaiman, H. Al-Karagoly, A.A. Alyamani et al., Recent advances in plant-mediated zinc oxide nanoparticles with their significant biomedical properties. Bioengineering 9(10), 541 (2022). https://doi.org/10.3390/bioengineering9100541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. H.M. Abdelmigid, M.M. Morsi, N.A. Hussien, A.A. Alyamani, N.A. Alhuthal, S. Albukhaty, Green synthesis of phosphorous-containing hydroxyapatite nanoparticles (nHAP) as a novel nano-fertilizer: preliminary assessment on pomegranate (Punica granatum L.). Nanomaterials 12(9), 1527 (2022). https://doi.org/10.3390/nano12091527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Y. Khane, K. Benouis, S. Albukhaty, G.M. Sulaiman, M.M. Abomughaid, A. Al Ali, D. Aouf et al., Green synthesis of silver nanoparticles using aqueous citrus limon zest extract: characterization and evaluation of their antioxidant and antimicrobial properties. Nanomaterials 12(12), 2013 (2022). https://doi.org/10.3390/nano12122013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. S.K. Mariappan, Evaluation of bioactive compounds of Solanum trilobatum L.: a native medicinal plant. Int. J. Bot. Stud. 3(2), 21–28 (2018)

    Google Scholar 

  19. V. Fabiola, H.S. Judia, A study on phytochemicals, antioxidant, antidiabetic and antimicrobial activity of the leaves of Solanum trilobatum. Int. J. Eng. Tech. 4(1), 393–404 (2018)

    Google Scholar 

  20. K. Ganesan, K. Sukalingam, B. Xu, Solanum trilobatum L. ameliorate thioacetamide-induced oxidative stress and hepatic damage in albino rats. Antioxidants 6(3), 68 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  21. M. Ramar et al., Synthesis of silver nanoparticles using Solanum trilobatum fruits extract and its antibacterial, cytotoxic activity against human breast cancer cell line MCF 7. Spectrochim. Acta Part A 140, 223–228 (2015)

    Article  CAS  Google Scholar 

  22. B. Ajitha, Y.A.K. Reddy, P.S. Reddy, Biosynthesis of silver nanoparticles using Plectranthus amboinicus leaf extract and its antimicrobial activity. Spectrochim. Acta Part A 128, 257–262 (2014)

    Article  CAS  Google Scholar 

  23. G. Arumugam, M.K. Swamy, U.R. Sinniah, Plectranthus amboinicus (Lour.) spreng: botanical, phytochemical, pharmacological and nutritional significance. Molecules 21(4), 369 (2016). https://doi.org/10.3390/molecules21040369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. S. Bawazeer et al., Green synthesis of silver nanoparticles using Tropaeolum majus: phytochemical screening and antibacterial studies. Green Process. Synthesis 10(1), 85–94 (2021)

    Article  CAS  Google Scholar 

  25. H. Umar, M.R. Aliyu, A.G. Usman et al., Prediction of cell migration potential on human breast cancer cells treated with Albizia lebbeck ethanolic extract using extreme machine learning. Sci. Rep. 13, 22242 (2023). https://doi.org/10.1038/s41598-023-49363-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. U.P. Manik et al., Green synthesis of silver nanoparticles using plant leaf extraction of Artocarpus heterophylus and Azadirachta indica. Results Mater. 6, 100086 (2020). https://doi.org/10.1016/j.rinma.2020.100086

    Article  Google Scholar 

  27. H. Al-Karagoly, A. Rhyaf, H. Naji, S. Albukhaty, F.A. Almalki, A.A. Alyamani et al., Green synthesis, characterization, cytotoxicity, and antimicrobial activity of iron oxide nanoparticles using Nigella sativa seed extract. Green Process. Synthesis 11(1), 254–265 (2022). https://doi.org/10.1515/gps-2022-0026

    Article  CAS  Google Scholar 

  28. A.S. Lanje, S.J. Sharma, R.B. Pode, Synthesis of silver nanoparticles: a safer alternative to conventional antimicrobial and antibacterial agents. J. Chem. Pharm. Res. 2, 478–483 (2010)

    CAS  Google Scholar 

  29. D. Nadhiya, A. Kala, P. Sasikumar et al., Influence of Cu2+ substitution on the structural, optical, magnetic, and antibacterial behaviour of zinc ferrite nanoparticles. J. Saudi Chem. Soc. 27(5), 101696 (2023). https://doi.org/10.1016/j.jscs.2023.101696

    Article  CAS  Google Scholar 

  30. G. Nagaraj, M.K.A. Mohammed, H.G. Abdulzahraa et al., Effects of the surface of solar-light photocatalytic activity of Ag-doped TiO2 nanohybrid material prepared with a novel approach. Appl. Phys. A 127, 269 (2021). https://doi.org/10.1007/s00339-021-04427-7

    Article  CAS  Google Scholar 

  31. B.D. Hall, D. Zanchet, D. Ugarte, Estimating nanoparticle size from diffraction measurements. J. Appl. Crystallogr. 33, 1335–1341 (2000)

    Article  CAS  Google Scholar 

  32. M.A. Majeed Khan, S. Kumar, M. Ahamed et al., Structural and thermal studies of silver nanoparticles and electrical transport study of their thin films. Nanoscale Res. Lett. 6, 434 (2011). https://doi.org/10.1186/1556-276X-6-434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. S. Karthikeyan, M. Selvapandiyan, P. Sasikumar, M. Parthibavaraman, S. Nithiyanantham, V.T. Srisuvetha, Investigation on the properties of vanadium doping WO3 nanostructures by hydrothermal method. Mater. Sci. Energy Technol. 5, 411–415 (2022)

    CAS  Google Scholar 

  34. S. Bykkam, M. Ahmadipour, S. Narisngam, V.R. Kalagadda, S.C. Chidurala, Extensive studies on X-ray diffraction of green synthesized silver nanoparticles. Adv. Nanopart. 4(1), 1–10 (2015)

    Article  Google Scholar 

  35. S. Safat, F. Buazar, S. Albukhaty et al., Enhanced sunlight photocatalytic activity and biosafety of marine-driven synthesized cerium oxide nanoparticles. Sci. Rep. 11, 14734 (2021). https://doi.org/10.1038/s41598-021-94327-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. M. Mousavi-Kamazani, Z. Zarghami, M. Salavati-Niasari, Facile and novel chemical synthesis, characterization, and formation mechanism of copper sulfide (Cu2S, Cu2S/CuS, CuS) nanostructures for increasing the efficiency of solar cells. J. Phys. Chem. C 120(4), 2096–2108 (2016)

    Article  CAS  Google Scholar 

  37. R.K. Santos, T.A. Martins, G.N. Silva, M.V.S. Conceição, I.C. Nogueira, E. Longo, G. Botelho, Ag3PO4/NiO composites with enhanced photocatalytic activity under visible light. ACS Omega 5(34), 21651–21661 (2020). https://doi.org/10.1021/acsomega.0c02456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. O.V. Mikhailov, E.O. Mikhailova, Elemental silver nanoparticles: biosynthesis and bio applications. Materials (Basel, Switzerland) 12(19), 3177 (2019). https://doi.org/10.3390/ma12193177

    Article  CAS  PubMed  Google Scholar 

  39. M. Sivaramakrishnan, V. Jagadeesan Sharavanan, D. Karaiyagowder Govindarajan et al., Green synthesized silver nanoparticles using aqueous leaf extracts of Leucas aspera exhibits antimicrobial and catalytic dye degradation properties. SN Appl. Sci. 1, 208 (2019). https://doi.org/10.1007/s42452-019-0221-1

    Article  CAS  Google Scholar 

  40. S. Senthilnathan, K.G. Kumar, S. Sugunraj, M.A. Dhanalakshmi, M. Rajendraprasad, M. Suganthi et al., MoS2 modified g-C3N4 composite: a potential candidate for photocatalytic applications. J. Saudi Chem. Soc. 27(5), 101717 (2023). https://doi.org/10.1016/j.jscs.2023.101717

    Article  CAS  Google Scholar 

  41. M.M. Rashad, S. Soltan, A.A. Ramadan, M.F. Bekheet, D.A. Rayan, Investigation of the structural, optical and magnetic properties of CuO/CuFe2O4 nanocomposites synthesized via simple microemulsion method. Ceram. Int. 41(9), 12237–12245 (2015)

    Article  CAS  Google Scholar 

  42. K.G. Kumar, P.B. Bhargav, C. Balaji, N. Ahmed, K. Aravinth, P. Ramasamy, Effect of sintering on structural modification and phase transition of Al-substituted LLZO electrolytes for solid state battery applications. J. Electrochem. Energy Convers. Storage 18, 31012 (2021)

    Article  CAS  Google Scholar 

  43. M. Sivaramakrishnan, V.J. Sharavanan, D.K. Govindarajan, Y. Meganathan, B.S. Devaraj, S. Natesan, Green synthesized silver nanoparticles using aqueous leaf extracts of Leucas aspera exhibits antimicrobial and catalytic dye degradation properties. SN Appl. Sci. 1, 1–8 (2019)

    Article  Google Scholar 

  44. R.A. Dorgham, A.A. Moaty, K. P. Chong, B. H. Elwakil, Molasses-silver nanoparticles: synthesis, optimization, characterization, and antibiofilm activity. Int. J. Mol. Sci. 23(18), 10243 (2022). https://doi.org/10.3390/ijms231810243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. S. Mohanaparameswari, M. Balachandramohan, P. Sasikumar, C. Rajeevgandhi, M. Vimalan, S. Pugazhendhi, K. Ganesh Kumar, S. Albukhaty, G. Sulaiman, M. Abomughaid, M. Abu-Alghayth, Investigation of structural properties and antibacterial activity of AgO nanoparticle extract from Solanum nigrum/Mentha leaf extracts by green synthesis method. Green Process. Synthesis 12(1), 20230080 (2023). https://doi.org/10.1515/gps-2023-0080

    Article  CAS  Google Scholar 

  46. K.C. Kao, Dielectric phenomena in solids (Academic Press, New York, 2004)

    Google Scholar 

  47. C. Rayssi, S. El Kossi, J. Dhahri, K. Khirouni, Frequency and temperature-dependence of dielectric permittivity and electric modulus studies of the solid solution Ca0.85Er0.1Ti1-x Co4x/3O3 (0 ≤ x ≤ 0.1). RSC Adv. 8(31), 17139–17150 (2018). https://doi.org/10.1039/c8ra00794b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. M. Nakhaei, D.S. Khoshnoud, Influence of particle size and lattice distortion on magnetic and dielectric properties of NdFeO3 orthoferrite. Physica B 553, 53–58 (2019)

    Article  CAS  Google Scholar 

  49. B. Gowtham, V. Balasubramani, S. Ramanathan, M. Ubaidullah, S.F. Shaikh, G. Sreedevi, Dielectric relaxation, electrical conductivity measurements, electric modulus and impedance analysis of WO3 nanostructures. J. Alloys Compd. 888, 161490 (2021)

    Article  CAS  Google Scholar 

  50. P. Saravanan, K. SenthilKannan, A. Mustafa, M. Vimalan, M. Bououdina, S. Balasubramanian, Dielectric and magnetic properties of Allium cepa and Raphanus sativus extracts biogenic ZnO nanoparticles. J. Mater. Sci. 32, 590–603 (2021)

    CAS  Google Scholar 

  51. B.S. Nagrare, S.S. Kekade, B. Thombare, R.V. Reddy, S.I. Patil, Hyperfine interaction, Raman and magnetic study of YFeO3 nanocrystals. Solid State Commun. 280, 32–38 (2018)

    Article  CAS  Google Scholar 

  52. P. Sasikumar, A. Gopalan, S. Pugazhendhi, M. Vimalan, M. Abbas, Tunable luminescence and electrical properties of cerium doped strontium aluminate (SrAl2O4: Ce3+) phosphors for white LED applications. Heliyon 9, 6 (2023)

    Google Scholar 

  53. B.J. Hunt, Maxwell, measurement, and the modes of electromagnetic theory. Hist. Stud. Nat. Sci. 45(2), 303–339 (2014)

    Article  Google Scholar 

  54. N. Ikeda, H. Ohsumi, K. Ohwada et al., Ferroelectricity from iron valence ordering in the charge-frustrated system LuFe2O4. Nature 436, 1136–1138 (2005). https://doi.org/10.1038/nature04039

    Article  CAS  PubMed  Google Scholar 

  55. B. Kolaczkowski, J. Thornton, Performance of maximum parsimony and likelihood phylogenetics when evolution is heterogeneous. Nature 431, 980–984 (2004). https://doi.org/10.1038/nature02917

    Article  CAS  PubMed  Google Scholar 

  56. E. Elaiyappillai, S. Kogularasu, S.-M. Chen, M. Akilarasan, C.E. Joshua, P.M. Johnson, M.A. Ali, F.M. Al-Hemaid, M. Elshikh, Sonochemically recovered silver oxide nanoparticles from the wastewater of photo film processing units as an electrode material for supercapacitor and sensing of 2, 4, 6-trichlorophenol in agricultural soil samples. UltrasonSonochem 50, 255–264 (2019)

    CAS  Google Scholar 

  57. V. Buscaglia, M.T. Buscaglia, M. Viviani, L. Mitoseriu, P. Nanni, V. Trefiletti et al., Grain size and grain boundary-related effects on the properties of nanocrystalline barium titanate ceramics. J. Eur. Ceram. Soc. 26(14), 2889–2898 (2006)

    Article  CAS  Google Scholar 

  58. F. Mehmood, J. Iqbal, T. Jan, W. Ahmed, W. Ahmed, A. Arshad, Q. Mansoor, S.Z. Ilyas, M. Ismail, I. Ahmad, Effect of Sn doping on the structural, optical, electrical and anticancer properties of WO3 nanoplates. Ceram. Int. 42, 14334–14341 (2016)

    Article  CAS  Google Scholar 

  59. N. Senthilkumar, M. Ganapathy, A. Arulraj, M. Meena, M. Vimalan, I.V. Potheher, Two step synthesis of ZnO/Ag and ZnO/Au core/shell nanocomposites: structural, optical and electrical property analysis. J. Alloys Compd. 750, 171–181 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author K M Batoo would like to thank Researchers Supporting Project No. (RSP2024R148), King Saud University, Riyadh, Saudi Arabia for the financial support.

Funding

No funding was received for this study.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and methodology; Mohanaparameswari. S, Balachandramohan. M, and C. Rajeevgandhi; Formal analysis, S. Pugazhendhi and M. Vimalan; Investigation and data curation Salim Albukhaty, Khalid Mujasam Batoo, and Sajjad Hussain; validation, S. Pugazhendhi; visualization, Sajjad Hussain; Original draft preparation; P. Sasikumar, Khalid Mujasam Batoo, and Mohanaparameswari. S, writing—review and editing, Salim Albukhaty, M. Khalid Hossain and Ghassan M. Sulaiman.; Supervision, Salim Albukhaty, P. Sasikumar, and Ganesh Kumar K. All authors approved the final version of the manuscript.

Corresponding authors

Correspondence to M. Balachandramohan, K. Ganesh Kumar, P. Sasikumar or Salim Albukhaty.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohanaparameswari, S., Balachandramohan, M., Kumar, K.G. et al. Green Synthesis of Silver Oxide Nanoparticles Using Plectranthus amboinicus and Solanum trilobatum Extracts as an Eco-friendly Approach: Characterization and Antibacterial Properties. J Inorg Organomet Polym (2024). https://doi.org/10.1007/s10904-024-03030-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10904-024-03030-6

Keywords

Navigation