Skip to main content
Log in

Label-free electrochemical aptasensor based on gold nanoparticles/titanium carbide MXene for lead detection with its reduction peak as index signal

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Lead (Pb2+) is a common heavy metallic pollutant in the environment with severe side-effects, and it can lead to chronic poisoning towards humans. Hence, the monitoring of Pb2+ in environments is highly important as a dangerous water pollutant by a simple method. In this research, a label-free electrochemical aptamer sensor (aptasensor) based on the gold nanoparticles/titanium carbide (AuNPs/Ti3C2-MXene) with an interesting strategy: the reduction peak of Pb2+ as the index signal was prepared for Pb2+ detection. According to characterization results, Ti3C2-MXene nanosheets display an excellent supporting base with uniform distribution of the AuNPs without any aggregation, which is beneficial for the immobilization of Pb2+ aptamer. Besides, the sensing interface of the developed aptasensor was constructed by the stepwise assembly of Ti3C2-MXene, AuNPs, and thiol-modified aptamer of Pb2+. On interaction with Pb2+, the Pb2+ aptamer on the electrode surface generates a conformational change from a single-stranded oligonucleotide, resulting in a G-quadruplex stable structure. After that, Pb2+ can be successfully captured, and reduction peak currents can be directly detected by the negative scan of square wave voltammetry (NSSWV). Under optimal experimental conditions, the reduction peak currents of Pb2+ displayed a good linear relationship with the logarithm of Pb2+ concentrations from 5 × 10−7 to 3 × 10−4 M, and its detection limit was estimated to be 3 × 10−7 M. In addition, the prepared aptasensor exhibited excellent repeatability, good stability, high selectivity, and high reproducibility, indicating its great potential for Pb2+ environmental monitoring with recovery range 96.97–108.03%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Baladi E, Davar F, Hojjati-Najafabadi A (2022) Synthesis and characterization of g-C3N4-CoFe2O4-ZnO magnetic nanocomposites for enhancing photocatalytic activity with visible light for degradation of penicillin G antibiotic. Environ Res 215:114270

    Article  CAS  Google Scholar 

  2. Yin H, Zhong W, Yin M, Kang C, Shi L, Tang H, Yang C, Althakafy JT, Huang M, Alanazi AK, Qu L, Li Y (2022) Carboxyl-functionalized poly(arylene ether nitrile)-based rare earth coordination polymer nanofibrous membrane for highly sensitive and selective sensing of Fe3+ ions. Adv Compos Hybrid Mater 5:2031–2041

    Article  CAS  Google Scholar 

  3. Si Y, Li J, Cui B, Tang D, Yang L, Murugadoss V, Maganti S, Huang M, Guo Z (2022) Janus phenol–formaldehyde resin and periodic mesoporous organic silica nanoadsorbent for the removal of heavy metal ions and organic dyes from polluted water. Adv Compos Hybrid Mater 5:1180–1195

    Article  CAS  Google Scholar 

  4. Wu Q, Gao L, Huang M, Mersal GAM, Ibrahim MM, El-Bahy ZM, Shi X, Jiang Q (2022) Aminated lignin by ultrasonic method with enhanced arsenic (V) adsorption from polluted water. Adv Compos Hybrid Mater 5:1044–1053

    Article  CAS  Google Scholar 

  5. Liang Y, Xia M, Yu Q, Li Y, Sui Z, Yuan Y, Hu X-M, Chen Q, Wang N (2021) Guanidinium-based ionic covalent organic frameworks for capture of uranyl tricarbonate. Adv Compos Hybrid Mater 5:184–194

    Article  Google Scholar 

  6. Zhang H, Ding X, Wang S, Huang Y, Zeng X-F, Maganti S, Jiang Q, Huang M, Guo Z, Cao D (2022) Heavy metal removal from wastewater by a polypyrrole-derived N-doped carbon nanotube decorated with fish scale-like molybdenum disulfide nanosheets. Engineered Science.

  7. Mansoorianfar M, Nabipour H, Pahlevani F, Zhao Y, Hussain Z, Hojjati-Najafabadi A, Hoang HY, Pei R (2022) Recent progress on adsorption of cadmium ions from water systems using metal-organic frameworks (MOFs) as an efficient class of porous materials. Environ Res 214:114113

    Article  CAS  Google Scholar 

  8. Lee HY, Bae DR, Park JC, Song H, Han WS, Jung JH (2009) A selective fluoroionophore based on BODIPY-functionalized magnetic silica nanoparticles: removal of Pb2+ from human blood. Angew Chem Int Ed Engl 48:1239–1243

    Article  CAS  Google Scholar 

  9. Nigg JT, Knottnerus GM, Martel MM, Nikolas M, Cavanagh K, Karmaus W, Rappley MD (2008) Low blood lead levels associated with clinically diagnosed attention-deficit/hyperactivity disorder and mediated by weak cognitive control. Biol Psychiatry 63:325–331

    Article  CAS  Google Scholar 

  10. Li X, Zhang Y, Tan M, Liu J, Bao L, Zhang G, Li Y, Iida A (2009) Atmospheric lead pollution in fine particulate matter in Shanghai, China. J Environ Sci 21:1118–1124

    Article  CAS  Google Scholar 

  11. Naseri MT, Hosseini MR, Assadi Y, Kiani A (2008) Rapid determination of lead in water samples by dispersive liquid-liquid microextraction coupled with electrothermal atomic absorption spectrometry. Talanta 75:56–62

    Article  CAS  Google Scholar 

  12. Rebocho J, Carvalho ML, Marques AF, Ferreira FR, Chettle DR (2006) Lead post-mortem intake in human bones of ancient populations by (109) Cd-based X-ray fluorescence and EDXRF. Talanta 70:957–961

    Article  CAS  Google Scholar 

  13. Aydin FA, Soylak M (2010) Separation, preconcentration and inductively coupled plasma-mass spectrometric (ICP-MS) determination of thorium(IV), titanium(IV), iron(III), lead(II) and chromium(III) on 2-nitroso-1-naphthol impregnated MCI GEL CHP20P resin. J Hazard Mater 173:669–674

    Article  CAS  Google Scholar 

  14. Pelossof G, Tel-Vered R, Willner I (2012) Amplified surface plasmon resonance and electrochemical detection of Pb2+ ions using the Pb2+-dependent DNAzyme and hemin/G-quadruplex as a label. Anal Chem 84:3703–3709

    Article  CAS  Google Scholar 

  15. Huang L, Chen D, Ding Y, Feng S, Wang ZL, Liu M (2013) Nickel-cobalt hydroxide nanosheets coated on NiCo2O4 nanowires grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett 13:3135–3139

    Article  CAS  Google Scholar 

  16. Ellington ADSJ (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    Article  CAS  Google Scholar 

  17. Gao C, Wang Q, Gao F, Gao F (2014) A high-performance aptasensor for mercury(II) based on the formation of a unique ternary structure of aptamer-Hg(2+)-neutral red. Chem Commun 50:9397–9400

    Article  CAS  Google Scholar 

  18. Pang Y, Rong Z, Xiao R, Wang S (2015) “Turn on” and label-free core-shell Ag@SiO2 nanoparticles-based metal-enhanced fluorescent (MEF) aptasensor for Hg2+. Sci Rep 5:9451

    Article  Google Scholar 

  19. Lin Z, Chen Y, Li X, Fang W (2011) Pb2+ induced DNA conformational switch from hairpin to G-quadruplex: electrochemical detection of Pb2+. Analyst 136:2367–2372

    Article  CAS  Google Scholar 

  20. Li F, Feng Y, Zhao C, Tang B (2011) Crystal violet as a G-quadruplex-selective probe for sensitive amperometric sensing of lead. Chem Commun 47:11909–11911

    Article  CAS  Google Scholar 

  21. Jarczewska M, Kierzkowska E, Ziolkowski R, Gorski L, Malinowska E (2015) Electrochemical oligonucleotide-based biosensor for the determination of lead ion. Bioelectrochemistry 101:35–41

    Article  CAS  Google Scholar 

  22. Akbar Hojjati-Najafabadi MSR, Karimi F, Zabihi-Feyzaba H, Malekmohammad S, Agarwal S, Gupta VK, Khalilzadeh MA (2020) Determination of tert-butylhydroquinone using a nanostructured sensor based on CdO/SWCNTs and ionic liquid. Int J Electrochem Sci 15:6969–6980

    Article  Google Scholar 

  23. Rao L, Zhu Y, Duan Z, Xue T, Duan X, Wen Y, Kumar AS, Zhang W, Xu J, Hojjati-Najafabadi A (2022) Lotus seedpods biochar decorated molybdenum disulfide for portable, flexible, outdoor and inexpensive sensing of hyperin. Chemosphere 301:134595

    Article  CAS  Google Scholar 

  24. Farzin L, Shamsipur M, Sheibani S (2017) A review: aptamer-based analytical strategies using the nanomaterials for environmental and human monitoring of toxic heavy metals. Talanta 174:619–627

    Article  CAS  Google Scholar 

  25. Babak Anasori YX, Beidaghi M, Jun Lu, Hosler BC, Hultman L, Kent PRC, Gogotsi Y, Barsoum MW (2015) Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano 9:9507–9516

    Article  Google Scholar 

  26. Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum MW (2011) Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater 23:4248–4253

    Article  CAS  Google Scholar 

  27. Xie X, Chen S, Ding W, Nie Y, Wei Z (2013) An extraordinarily stable catalyst: Pt NPs supported on two-dimensional Ti3C2X2 (X = OH, F) nanosheets for oxygen reduction reaction. Chem Commun 49:10112–10114

    Article  CAS  Google Scholar 

  28. Luo J, Tao X, Zhang J, Xia Y, Huang H, Zhang L, Gan Y, Liang C, Zhang W (2016) Sn4+ ion decorated highly conductive Ti3C2 MXene: promising lithium-ion anodes with enhanced volumetric capacity and cyclic performance. ACS Nano 10:2491–2499

    Article  CAS  Google Scholar 

  29. Lukatskaya MR, Mashtalir O, Ren CE, Dall’Agnese Y, Rozier P, Taberna PL, Naguib M, Simon P, Barsoum MW, Gogotsi Y (2013) Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341:1502–1505

    Article  CAS  Google Scholar 

  30. Chen A, Wang C, Abu Ali OA, Mahmoud SF, Shi Y, Ji Y, Algadi H, El-Bahy SM, Huang M, Guo Z, Cui D, Wei H (2022) MXene@nitrogen-doped carbon films for supercapacitor and piezoresistive sensing applications. Compos Part A-Appl S 163:107174

    Article  CAS  Google Scholar 

  31. Pu L, Zhang J, Jiresse NKL, Gao Y, Zhou H, Naik N, Gao P, Guo Z (2021) N-doped MXene derived from chitosan for the highly effective electrochemical properties as supercapacitor. Adv Compos Hybrid Mater 5:356–369

    Article  Google Scholar 

  32. Hu Q, Wang H, Wu Q, Ye X, Zhou A, Sun D, Wang L, Liu B, He J (2014) Two-dimensional Sc2C: a reversible and high-capacity hydrogen storage material predicted by first-principles calculations. Int J Hydrog Energy 39:10606–10612

    Article  CAS  Google Scholar 

  33. Asif Shahzad KR, Miran W, Nawaz M, Jang J, Mahmoud KA, Lee DS (2017) Two-dimensional Ti3C2Tx MXene nanosheets for efficient copper removal from water. ACS Sustain Chem Eng 5:11481–11488

    Article  Google Scholar 

  34. Wu L, Lu X, Dhanjai WuZS, Dong Y, Wang X, Zheng S, Chen J (2018) 2D transition metal carbide MXene as a robust biosensing platform for enzyme immobilization and ultrasensitive detection of phenol. Biosens Bioelectron 107:69–75

    Article  CAS  Google Scholar 

  35. Shao Y, Zhu Y, Zheng R, Wang P, Zhao Z, An J (2022) Highly sensitive and selective surface molecularly imprinted polymer electrochemical sensor prepared by Au and MXene modified glassy carbon electrode for efficient detection of tetrabromobisphenol A in water. Adv Compos Hybrid Mater 5:3104–3116

    Article  CAS  Google Scholar 

  36. Sivasankarapillai VS, Sharma TSK, Hwa K-Y, Wabaidur SM, Angaiah S, Dhanusuraman R (2022) MXene based sensing materials: current status and future perspectives. ES Energy Environ 15:4–14

    CAS  Google Scholar 

  37. Cheng H, Xing L, Zuo Y, Pan Y, Huang M, Alhadhrami A, Ibrahim MM, El-Bahy ZM, Liu C, Shen C, Liu X (2022) Constructing nickel chain/MXene networks in melamine foam towards phase change materials for thermal energy management and absorption-dominated electromagnetic interference shielding. Adv Compos Hybrid Mater 5:755–765

    Article  CAS  Google Scholar 

  38. Cao Y, Weng M, Mahmoud MHH, Elnaggar AY, Zhang L, El Azab IH, Chen Y, Huang M, Huang J, Sheng X (2022) Flame-retardant and leakage-proof phase change composites based on MXene/polyimide aerogels toward solar thermal energy harvesting. Adv Compos Hybrid Mater 5:1253–1267

    Article  CAS  Google Scholar 

  39. Dai B, Ma Y, Dong F, Yu J, Ma M, Thabet HK, El-Bahy SM, Ibrahim MM, Huang M, Seok I, Roymahapatra G, Naik N, Xu BB, Ding J, Li T (2022) Overview of MXene and conducting polymer matrix composites for electromagnetic wave absorption. Adv Compos Hybrid Mater 5:704–754

    Article  Google Scholar 

  40. Kong D, El-Bahy ZM, Algadi H, Li T, El-Bahy SM, Nassan MA, Li J, Faheim AA, Li A, Xu C, Huang M, Cui D, Wei H (2022) Highly sensitive strain sensors with wide operation range from strong MXene-composited polyvinyl alcohol/sodium carboxymethylcellulose double network hydrogel. Adv Compos Hybrid Mater 5:1976–1987

    Article  CAS  Google Scholar 

  41. Zhang Q, Wang F, Zhang H, Zhang Y, Liu M, Liu Y (2018) Universal Ti3C2 MXenes based self-standard ratiometric fluorescence resonance energy transfer platform for highly sensitive detection of exosomes. Anal Chem 90:12737–12744

    Article  CAS  Google Scholar 

  42. Wang H, Li H, Huang Y, Xiong M, Wang F, Li C (2019) A label-free electrochemical biosensor for highly sensitive detection of gliotoxin based on DNA nanostructure/MXene nanocomplexes. Biosens Bioelectron 142:111531

    Article  CAS  Google Scholar 

  43. Mohammadniaei M, Koyappayil A, Sun Y, Min J, Lee MH (2020) Gold nanoparticle/MXene for multiple and sensitive detection of oncomiRs based on synergetic signal amplification. Biosens Bioelectron 159:112208

    Article  CAS  Google Scholar 

  44. Jiang D, Wei M, Du X, Qin M, Shan X, Chen Z (2022) One-pot synthesis of ZnO quantum dots/N-doped Ti3C2 MXene: tunable nitrogen-doping properties and efficient electrochemiluminescence sensing. Chem Eng J 430:132771

    Article  CAS  Google Scholar 

  45. You Q, Zhuang L, Chang Z, Ge M, Mei Q, Yang L, Dong WF (2022) Hierarchical Au nanoarrays functionalized 2D Ti2CTx MXene membranes for the detection of exosomes isolated from human lung carcinoma cells. Biosens Bioelectron 216:114647

    Article  CAS  Google Scholar 

  46. Hojjati-Najafabadi A, Salmanpour S, Sen F, Asrami PN, Mahdavian M, Khalilzadeh MA (2021) A tramadol drug electrochemical sensor amplified by biosynthesized au nanoparticle using mentha aquatic extract and ionic liquid. Top Catal 65:587–594

    Article  Google Scholar 

  47. Maria R, Lukatskaya SK, Lin Z, Zhao M-Q, Shpigel N, Levi MD, Halim J, Taberna P-L, Barsoum MW, Simon P, Gogotsi Y (2017) Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat Energy 2:17105

    Article  Google Scholar 

  48. Gao F, Gao C, He S, Wang Q, Wu A (2016) Label-free electrochemical lead (II) aptasensor using thionine as the signaling molecule and graphene as signal-enhancing platform. Biosens Bioelectron 81:15–22

    Article  CAS  Google Scholar 

  49. Erkmen C, TiĞ GA, Uslu B (2022) First label-free impedimetric aptasensor based on Au NPs/TiO2 NPs for the determination of leptin. Sens Actuators B Chem 358:131420

    Article  CAS  Google Scholar 

  50. Zhu Y, Zeng GM, Zhang Y, Tang L, Chen J, Cheng M, Zhang LH, He L, Guo Y, He XX, Lai MY, He YB (2014) Highly sensitive electrochemical sensor using a MWCNTs/GNPs-modified electrode for lead (II) detection based on Pb2+-induced G-rich DNA conformation. Analyst 139:5014–5020

    Article  CAS  Google Scholar 

  51. Xu B, Zhu M, Zhang W, Zhen X, Pei Z, Xue Q, Zhi C, Shi P (2016) Ultrathin MXene-micropattern-based field-effect transistor for probing neural activity. Adv Mater 28:3333–3339

    Article  CAS  Google Scholar 

  52. Alhabeb M, Maleski K, Anasori B, Lelyukh P, Clark L, Sin S, Gogotsi Y (2017) Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem Mat 29:7633–7644

    Article  CAS  Google Scholar 

  53. Liang L, Han G, Li Y, Zhao B, Zhou B, Feng Y, Ma J, Wang Y, Zhang R, Liu C (2019) Promising Ti3C2Tx MXene/Ni chain hybrid with excellent electromagnetic wave absorption and shielding capacity. ACS Appl Mater Interfaces 11:25399–25409

    Article  CAS  Google Scholar 

  54. Sun S, Wang M, Chang X, Jiang Y, Zhang D, Wang D, Zhang Y, Lei Y (2020) W18O49/Ti3C2Tx Mxene nanocomposites for highly sensitive acetone gas sensor with low detection limit. Sens Actuators B-Chem 304:127274

    Article  CAS  Google Scholar 

  55. Liu M, Ji J, Song P, Liu M, Wang Q (2021) α-Fe2O3 nanocubes/Ti3C2Tx MXene composites for improvement of acetone sensing performance at room temperature. Sens Actuators B-Chem 349:130782

    Article  CAS  Google Scholar 

  56. Medetalibeyoglu H, Kotan G, Atar N, Yola ML (2020) A novel and ultrasensitive sandwich-type electrochemical immunosensor based on delaminated MXene@AuNPs as signal amplification for prostate specific antigen (PSA) detection and immunosensor validation. Talanta 220:121403

    Article  CAS  Google Scholar 

  57. Zhang H, Wang Z, Wang F, Zhang Y, Wang H, Liu Y (2020) In situ formation of gold nanoparticles decorated Ti3C2 MXenes nanoprobe for highly sensitive electrogenerated chemiluminescence detection of exosomes and their surface proteins. Anal Chem 92:5546–5553

    Article  CAS  Google Scholar 

  58. Mi X, Li H, Tan R, Feng B, Tu Y (2021) The TDs/aptamer cTnI biosensors based on HCR and Au/Ti3C2-MXene amplification for screening serious patient in COVID-19 pandemic. Biosens Bioelectron 192:113482

    Article  CAS  Google Scholar 

  59. Anuar K, Hamdan S (1992) A lead(II) ion selective electrode via a metal complex of poly(hydroxamic acid). Talanta 39:1653–1656

    Article  CAS  Google Scholar 

  60. Guo M, Law W-C, Liu X, Cai H, Liu L, Swihart MT, Zhang X, Prasad PN (2014) Plasmonic semiconductor nanocrystals as chemical sensors: Pb2+ quantitation via aggregation-induced plasmon resonance shift. Plasmonics 9:893–898

    Article  CAS  Google Scholar 

  61. Chen P, Zhang R, Jiang Q, Xiong X, Deng S (2015) Colorimetric detection of lead ion based on gold nanoparticles and lead-stabilized G-quartet formation. J Biomed Sci Eng 08:451–457

    Article  Google Scholar 

  62. Wang X, Guo X (2009) Ultrasensitive Pb2+ detection based on fluorescence resonance energy transfer (FRET) between quantum dots and gold nanoparticles. Analyst 134:1348–1354

    Article  CAS  Google Scholar 

  63. Yap Wing Fen WMMY (2013) Utilization of chitosan based sensor thin films for the detection of lead ion by surface plasmon resonance optical sensor. IEEE Sens J 13:1413–1418

    Article  Google Scholar 

  64. Shrivas K, Sahu B, Deb MK, Thakur SS, Sahu S, Kurrey R, Kant T, Patle TK, Jangde R (2019) Colorimetric and paper-based detection of lead using PVA capped silver nanoparticles: experimental and theoretical approach. Microchem J 150:104156

    Article  CAS  Google Scholar 

  65. Huang MR, Rao XW, Li XG, Ding YB (2011) Lead ion-selective electrodes based on polyphenylenediamine as unique solid ionophores. Talanta 85:1575–1584

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Dr. Zhouxiang Zhang: characterization of data and analysis of the experimental part. Prof. Hassan Karimi-Maleh: writing—original draft preparation and revision of paper.

Corresponding authors

Correspondence to Zhouxiang Zhang or Hassan Karimi-Maleh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Karimi-Maleh, H. Label-free electrochemical aptasensor based on gold nanoparticles/titanium carbide MXene for lead detection with its reduction peak as index signal. Adv Compos Hybrid Mater 6, 68 (2023). https://doi.org/10.1007/s42114-023-00652-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-023-00652-1

Keywords

Navigation