Skip to main content
Log in

The presence of Epichloë sp. in Bromus auleticus (Trin.) seeds enhances micropropagation and growth of micropropagated plantlets from these seeds

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Bromus auleticus (Trin.) is a grass native to the southern cone with important agronomical potential as fodder. Different breeding programs have been initiated with this grass, but plant tissue culture techniques could not be used because B. auleticus is recalcitrant. The aim of the present study was to develop a micropropagation protocol in the genus Bromus and to investigate if the association between B. auleticus and Epichloë endophytes affected in vitro culture and growth of micropropagated plantlets. In different micropropagation stages, better results were obtained with endophyte-infected (E+) seeds compared to endophyte-free (E−) seeds. The E+ seeds presented higher percentages of in vitro germination (82 ± 5 vs. 57 ± 6%), callus induction (72 ± 6 vs. 37 ± 6%), and plant regeneration from callus (89 ± 5 vs. 13 ± 5%). We also compared the biomass of shoot complexes and regenerated plantlets. After 4 weeks of culture, shoot complexes obtained from E+ seeds reached greater weight than the ones regenerated from E− seeds (173 ± 24 vs. 74 ± 9 mg). More than the 80% of the regenerated shoot complexes were rooted ex vitro and acclimated, regardless of their origin (E+ or E−). Finally, after 4 weeks of acclimatization, the plantlets regenerated from E+ seeds reached a greater weight than the ones from E− seeds, (461 ± 64 vs. 172 ± 25 mg). These results indicate that the use of endophyte-infected (E+) seeds enhances significantly B. auleticus micropropagation and promotes growth of the regenerated plantlets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agarwal T, Gupta AK, Patel AK, Shekhawat NS (2015) Micropropagation and validation of genetic homogeneity of Alhagimaurorum using SCoT, ISSR and RAPD markers. Plant Cell Tiss Organ Cult 120:313–323

    Article  CAS  Google Scholar 

  • Ahmed MdR, Anis M, Alatar AA, Faisal M (2017) In vitro clonal propagation and evaluation of genetic fidelity using RAPD and ISSR marker in micropropagated plants of Cassia alata L.: a potential medicinal plant. Agroforest Syst 91:637–647

    Article  Google Scholar 

  • Arrieta AM, Iannone LJ, Scervino JM, Vignale MV, Novas MV (2015) A foliar endophyte increases the diversity of phosphorus-solubilizing rhizospheric fungi and mycorrhizal colonization in the wild grass Bromus auleticus. Fungal Ecol 17:146–154

    Article  Google Scholar 

  • Ayala W, Bemhaja M, Cotro B, Do Canto J, García J, Olmos F, Real D, Rebuffo M, Reyno R, Rossi C (2010) Forrajeras; catálogo de cultivares 2010. INIA, Montevideo

    Google Scholar 

  • Aygun A, Dumanoglu H (2015) In vitro shoot proliferation and in vitro and ex vitro root formation of Pyruselaea grifolia Pallas. Front Plant Sci 6:225

    Article  Google Scholar 

  • Clark E, White J, Patterson R (1983) Improved histochemical techniques for the detection of Acremonium coenophialum in tall fescue and methods of in vitro culture of the fungus. J Microbiol Methods 1:149–155

    Article  Google Scholar 

  • Clay K (1987) Effects of fungal endophytes on the seed and seedling biology of Lolium perenne and Festuca arundinacea. Oecologia 73:358–362

    Article  CAS  Google Scholar 

  • Clay K, Schardl C (2002) Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Am Nat 160:99–127

    Article  Google Scholar 

  • Condón F, Jaurena M, Reyno R, Otaño C, Lattanzi FA (2017) Spatial analysis of genetic diversity in a comprehensive collection of the native grass Bromus auleticus Trinius (ex Nees) in Uruguay. Grass Forage Sci 72:723–733

    Article  Google Scholar 

  • De Battista JP, Bacon CW, Severson R, Plattner RD, Bouton JH (1990) Indole acetic acid production by the fungal endophyte of tall fescue. Agron J 82:878–880

    Article  Google Scholar 

  • Gasser M, Ramos J, Vegetti A, Tivano JC (2005) Digestión de láminas foliares de Bromus auleticus Trin. ex Nees sometidas a diferentes tiempos de incubación ruminal. Agricultura Técnica 65:48–54

    Article  Google Scholar 

  • Giri CC, Praveena M (2015) In vitro regeneration, somatic hybridization and genetic transformation studies: an appraisal on biotechnological interventions in grasses. Plant Cell Tiss Org Cult 120:843–860

    Article  CAS  Google Scholar 

  • Gutiérrez HF, Pensiero JF, Zabala JM (2015) Effect of population combinations on the reproductive success and germination of seeds of Bromus auleticus (Poaceae). Grass Forage Sci 70:176–184

    Article  Google Scholar 

  • Gwinn K, Gavin A (1992) Relationship between endophyte infestation level of tall fescue seed lots and Rhizoctonia zeae seedling disease. Plant Dis 76:911–914

    Article  Google Scholar 

  • Iannone LJ, Cabral D (2006) Effects of the Neotyphodium endophyte status on plant performance of Bromus auleticus, a wild native grass from South America. Symbiosis 41:61–69

    Google Scholar 

  • Iannone LJ, Cabral D, Schardl CL, Rossi MS (2009) Phylogenetic divergence, morphological and physiological differences distinguish a new Neotyphodium endophyte species in the grass Bromus auleticus from South America. Mycologia 101:340–351

    Article  CAS  Google Scholar 

  • Iannone LJ, Pinget AD, Nagabhyru P, Schardl CL, De Battista JP (2012) Beneficial effects of Neotyphodium tembladerae and Neotyphodium pampeanum on a wild forage grass. Grass Forage Sci 67:382–390

    Article  Google Scholar 

  • Iannone LJ, Vignale MV, Pinget AD, Re A, Mc Cargo PD, Novas MV (2017) Seed-transmitted Epichloë sp. endophyte alleviates the negative effects of head smut of grasses (Ustilago bullata) on Bromus auleticus. Fungal Ecol 29:45–51

    Article  Google Scholar 

  • Ishikawa M, Robertson AJ, Gusta LV (1990) Effect of temperature, light, nutrients and dehardening on abscisic acid induced cold hardiness in Bromus inermis Leyss suspension cultured cells. Plant Cell Physiol 31:51–59

    CAS  Google Scholar 

  • Ishikawa M, Suzuki M, Nakamura T, Kishimoto T, Robertson AJ, Gusta LV (2006) Effect of growth phase on survival of bromegrass suspension cells following cryopreservation and abiotic stresses. Ann Bot 97:453–459

    Article  Google Scholar 

  • Johnson L, de Bonth ACM, Briggs LR et al (2013) The exploitation of Epichloë endophytes for agricultural benefit. Fungal Divers 60:171–188

    Article  Google Scholar 

  • Lee KW, Choi GJ, Kim KY, Ji HC, Park HS, Yoon SH, Lee SH (2009) High frequency plant regeneration from mature seed derived callus of Italian ryegrass (Lolium multiflorum) cultivars. Afr J Biotechnol 8:6828–6833

    CAS  Google Scholar 

  • Liu P, Zhang ZX, Yuan JG, Xi JB, Du XL, Yang ZY (2006) Callus induction and plant regeneration in eleven perennial ryegrass cultivars. Biotechnol Equip 20:30–37

    Article  Google Scholar 

  • Mc Cargo PD (2015) Evolución y diversidad de endófitos Epichloë de la forrajera nativa Bromus auleticus. Tesis Doctoral, p 136

  • Millot JC (1999) Bromus auleticus Trinius. Otra gramínea forrajera perenne invernal. Revista Oficial del Instituto Nacional de Semillas 2:25

    Google Scholar 

  • Millot JC (2001) Bromus auleticus: una nueva especie domesticada. Documento de recursos fitogenéticos PROCISUR, Diálogo LVI, Montevideo, 3–6

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15(3):473–497

    Article  CAS  Google Scholar 

  • Nagabhyru P, Dinkins RD, Wood CL, Bacon CW, Schardl CL (2013) Tall fescue endophyte effects on tolerance to water-deficit stress. BMC Plant Biol 13:1

    Article  Google Scholar 

  • Nakamura T, Ishikawa M (2006) Transformation of suspension cultures of bromegrass (Bromus inermis Leyss) by Agrobacterium tumefaciens. Plant Cell Tiss Org Cult 84:293–299

    Article  Google Scholar 

  • Nakamura T, Yazaki J, Kishimoto N, Kikuchi S, Robertson AJ, Gusta LV, Ishikawa M (2013) Comparison of long-term up-regulated genes during induction of freezing tolerance by cold and ABA in bromegrass cell cultures revealed by microarray analyses. Plant Growth Regul 71:113–136

    Article  CAS  Google Scholar 

  • Novas MV, Gentile A, Cabral D (2003) Comparative study of growth parameters on diaspores and seedlings between populations of Bromus setifolius from Patagonia, differing in Neotyphodium endophyte infection. Flora 198:421–426

    Article  Google Scholar 

  • Novas MV, Iannone LJ, Godeas AM, Scervino JM (2011) Evidence for leaf endophytes regulation on root symbionts: effect of Neotyphodium endophytes on the pre-infective state of mycorrhizal fungi. Symbiosis 51(1):19–28

    Article  Google Scholar 

  • Ran Y, Patron N, Yu Q, Georges S, Mason J, Spangenberg G (2014) Agrobacterium-mediated transformation of Lolium rigidum Gaud. Plant Cell Tiss Organ Cult 118:67–75

    Article  CAS  Google Scholar 

  • Regalado JJ, Vignale MV, Novas MV, Pitta-Alavarez SI, Iannone L (2017) Epichloë occultans improve the Lolium multiflorum micropropagation. Plant Cell Tiss Organ Cult 130:37–46

    Article  CAS  Google Scholar 

  • Scheffer-Basso SM, Fávero F, Jouris C, Dall’Agnol M (2009) Selection of Bromus auleticus populations: a winter perennial grass. R Bras Zootec 38:249–255

    Article  Google Scholar 

  • Song G, Walworth A, Hancock JF (2012) Factors influencing Agrobacterium-mediated transformation of switchgrass cultivars. Plant Cell Tiss Organ Cult 108:445–453

    Article  CAS  Google Scholar 

  • Tanino KR, Chen THH, Fuchigami LH, Weiser CJ (1991) Abscisic acid-induced cellular alterations during the induction of freezing tolerance in bromegrass cells. J Plant Physiol 137:619–624

    Article  CAS  Google Scholar 

  • Thomas J, Ajay D, Kumar RR, Mandal AKA (2010) Influence of beneficial microorganisms during in vivo acclimatization of in vitro-derived tea (Camellia sinensis) plants. Plant Cell Tiss Organ Cult 101:365–370

    Article  Google Scholar 

  • Torres MS, White JF Jr, Zhang X, Hinton DM, Bacon CW (2012) Endophyte mediated adjustments in host morphology and physiology and effects on host fitness traits in grasses. Fungal Ecol 5:322–330

    Article  Google Scholar 

  • Verma P, Khan SA, Mathur AK, Shanker K, Kalra A (2015) Fungal endophytes enhanced the growth and production kinetics of Vinca minor hairy roots and cell suspensions grown in bioreactor. Plant Cell Tiss Organ Cult 118:257–268

    Article  Google Scholar 

  • Vignale MV, Astiz-Gassó MM, Novas MV, Iannone LJ (2013) Epichloid endophytes confer resistance to the smut Ustilago bullata in the wild grass Bromus auleticus (Trin.). Biol Control 67:1–7

    Article  Google Scholar 

  • Vignale MV, Iannone LJ, Pinget AD, De Battista JP, Novas MV (2016) Effect of epichloid endophytes and soil fertilization on arbuscular mycorrhizal colonization of a wild grass. Plant Soil 405:279–287

    Article  CAS  Google Scholar 

  • Vignale MV, Iannone LJ, Scervino JM, Novas MV (2017) Epichloë exudates promote in vitro and in vivo arbuscular mycorrhizal fungi development and plant growth. Plant Soil https://doi.org/10.1007/s11104-017-3173-5

    Article  Google Scholar 

  • Wang X, Yam TW, Meng Q, Zhu J, Zhang P, Wu H, Wang J, Zhao Y, Song X (2016) The dual inoculation of endophytic fungi and bacteria promotes seedlings growth in Dendrobium catenatum (Orchidaceae) under in vitro culture conditions. Plant Cell Tiss Organ Cult 126:523–531

    Article  CAS  Google Scholar 

  • Wattanasiri C, Walton PD (1993) Effects of growth regulators on callus cell growth, plant regeneration, and somaclonal variation of smooth bromegrass (Bromus inermis Leyss). Euphytica 69:77–82

    Article  CAS  Google Scholar 

  • Xia C, Zhang X, Christensen MJ, Nan Z, Li C (2016) Epichloë endophyte affects the ability of powdery mildew (Blumeria graminis) to colonise drunken horse grass (Achnatherum inebrians). Fungal Ecol 16:26–34

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by funding from Agencia Nacional de Promoción Científica y Tecnológica (PICT Joven 2016-0487, PICT 2016-0877, PICT 2014-3315), CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina) Grant PIP 11220150100956CO and from Universidad de Buenos Aires UBACyT (20020150100067BA and 20020150200075BA).

Author information

Authors and Affiliations

Authors

Contributions

RJJ and PASI designed the micropropagation experiments. RJJ and BV executed the micropropagation experiments. VMV checked endophytic status of plant material. NMV and ILJ provided the plant material. RJJ wrote the manuscript. VMV, NMV and ILJ reviewed the manuscript. PASI reviewed the English of the manuscript. ILJ supervised the work.

Corresponding author

Correspondence to J. J. Regalado.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Fredy Altpeter.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIF 97795 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Regalado, J.J., Berdion, V., Vignale, M.V. et al. The presence of Epichloë sp. in Bromus auleticus (Trin.) seeds enhances micropropagation and growth of micropropagated plantlets from these seeds. Plant Cell Tiss Organ Cult 135, 279–286 (2018). https://doi.org/10.1007/s11240-018-1462-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-018-1462-1

Keywords

Navigation