Skip to main content
Log in

Constitutive expression of a grape aspartic protease gene in transgenic Arabidopsis confers osmotic stress tolerance

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Aspartic proteases are involved in various processes of plant senescence, programmed cell death, reproduction and stress responses. We previously identified a salt and drought stress induced gene, VlAP17, encoding a Group C aspartic protease. Here, we report its functional analysis through the characterization of transgenic Arabidopsis thaliana plants overexpressing VlAP17 under the control of constitutive promoter. The transgenic plants showed enhance salt and drought stress tolerance during seed germination as well as the seedling and mature plant stage. In additional, various stress responses indicators were analyzed and results suggested that osmotic stress caused less damage to the plasma membrane of transgenic seedlings than to that of wild type plants. VlAP17 overexpression also resulted in increased ABA levels, a reduction in average stomatal aperture size, and elevated expression levels of stress-response genes involved in the ABA-dependent pathway, as well as higher activities of several antioxidases: superoxide dismutase, catalase and peroxidase. Taken together, these findings suggest that VlAP17 plays a role in protecting the integrity of plasma membrane and it may also be involved in, or have a function upstream of, the ABA biosynthetic pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AP:

Aspartic protease

WT:

Wild type

CaMV:

Cauliflower mosaic virus

ORF:

Open reading frame

RT-PCR:

Reverse transcription-polymerase chain reaction

MS:

Murashige and Skoog

MDA:

Malondialdehyde

TCA:

Trichloroacetic acid

TBA:

Thiobarbituric acid

ELISA:

Enzyme-linked immunosorbent assay

NBT:

Nitro blue tetrazolium

DAB:

Diaminobenzidine

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

CAT:

Catalase

POD:

Peroxidase

H2O2 :

Hydrogen peroxide

O2 :

Superoxide anion

NCED3:

9-cis-epoxycarotenoid dioxygenase

ADH:

Alcohol dehydrogenase gene

FRY1:

Fiery 1

ERD:

Early responsive to dehydration

SOS:

Salt overly sensitive

DREB:

Dehydration responsive element binding factor

RD:

Responsive to dehydration

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Bajji M, Kinet JM, Lutts S (2002) The use of the electrolyte leakage method for assessing cell membrane stability as a water stress tolerance test in durum wheat. Plant Growth Regul 36:61–70

    Article  CAS  Google Scholar 

  • Cao WH, Liu J, He XJ, Mu RL, Zhou HL, Chen SY, Zhang JS (2007) Modulation of ethylene responses affects plant salt-stress responses. Plant Physiol 143:707–719

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chance B, Maehly A (1955) Assay of catalases and peroxidases. Methods Enzymol 2:764–775

    Article  Google Scholar 

  • Chen THH, Murata N (2002) Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr Opin Plant Biol 5:250–257

    Article  CAS  PubMed  Google Scholar 

  • Chen JJ, Ding JH, Ouyang YD, Du HY, Yang JY, Cheng K, Zhao J, Qiu SQ, Zhang XL, Yao JL, Liu KD, Wang L, Xu CG, Li XH, Xue YB, Xia M, Ji Q, Lu JF, Xu ML, Zhang QF (2008) A triallelic system of S5 is a major regulator of the reproductive barrier and compatibility of indica-japonica hybrids in rice. P Natl Acad S US A 105:11436–11441

    Article  CAS  Google Scholar 

  • Cheng CX, Xu XZ, Singer SD, Li J, Zhang HJ, Gao M, Wang L, Song JY, Wang XP (2013) Effect of GA(3) treatment on seed development and seed-related gene expression in grape. PLoS ONE 8:e80044

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chinnusamy V, Schumaker K, Zhu JK (2004) Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. J Exp Bot 55:225–236

    Article  CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Cramer GR, Ergul A, Grimplet J, Tillett RL, Tattersall EAR, Bohlman MC, Vincent D, Sonderegger J, Evans J, Osborne C, Quilici D, Schlauch KA, Schooley DA, Cushman JC (2007) Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles. Func Integ Genomic 7:111–134

    Article  CAS  Google Scholar 

  • de Carvalho MHC, d’Arcy-Lameta A, Roy-Macauley H, Gareil M, El Maarouf H, Pham-Thi AT, Zuily-Fodil Y (2001) Aspartic protease in leaves of common bean (Phaseolus vulgaris L.) and cowpea (Vigna unguiculata L. Walp): enzymatic activity, gene expression and relation to drought susceptibility. FEBS Lett 492:242–246

    Article  Google Scholar 

  • de Dorlodot S, Forster B, Pages L, Price A, Tuberosa R, Draye X (2007) Root system architecture: opportunities and constraints for genetic improvement of crops. Trends Plant Sci 12:474–481

    Article  PubMed  Google Scholar 

  • Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol 9:436–442

    Article  PubMed  Google Scholar 

  • Gao ZX, He XL, Zhao BC, Zhou CJ, Liang YZ, Ge RC, Shen YZ, Huang ZJ (2010) Overexpressing a putative aquaporin gene from wheat, TaNIP, enhances salt tolerance in transgenic Arabidopsis. Plant Cell Physiol 51:767–775

    Article  CAS  PubMed  Google Scholar 

  • Ge XC, Dietrich C, Matsuno M, Li GJ, Berg H, Xia YJ (2005) An Arabidopsis aspartic protease functions as an anti-cell-death component in reproduction and embryogenesis. EMBO Rep 6:282–288

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutases: I. occurrence in higher plants. Plant Physiol 59:309–314

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guo RR, Xu XZ, Carole B, Li XQ, Gao M, Zheng Y, Wang XP (2013) Genome-wide identification, evolutionary and expression analysis of the aspartic protease gene superfamily in grape. BMC Genom 14:554

    Article  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Huang GT, Ma SL, Bai LP, Zhang L, Ma H, Jia P, Liu J, Zhong M, Guo ZF (2012) Signal transduction during cold, salt, and drought stresses in plants. Mol Biol Rep 39:969–987

    Article  PubMed  Google Scholar 

  • Iuchi S, Kobayashi M, Taji T, Naramoto M, Seki M, Kato T, Tabata S, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K (2001) Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J 27:325–333

    Article  CAS  PubMed  Google Scholar 

  • Kato Y, Murakami S, Yamamoto Y, Chatani H, Kondo Y, Nakano T, Yokota A, Sato F (2004) The DNA-binding protease, CND41, and the degradation of ribulose-1,5-bisphosphate carboxylase/oxygenase in senescent leaves of tobacco. Planta 220:97–104

    Article  CAS  PubMed  Google Scholar 

  • Kim TH, Bohmer M, Hu HH, Nishimura N, Schroeder JI (2010) Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annu Rev Plant Biol 61:561–591

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim SH, Woo DH, Kim JM, Lee SY, Chung WS, Moon YH (2011) Arabidopsis MKK4 mediates osmotic-stress response via its regulation of MPK3 activity. Biochem Biophy Res Co 412:150–154

    Article  CAS  Google Scholar 

  • Kotchoni SO, Kuhns C, Ditzer A, Kirch HH, Bartels D (2006) Over-expression of different aldehyde dehydrogenase genes in Arabidopsis thaliana confers tolerance to abiotic stress and protects plants against lipid peroxidation and oxidative stress. Plant Cell Environ 29:1033–1048

    Article  CAS  PubMed  Google Scholar 

  • Laloi M, McCarthy J, Morandi O, Gysler C, Bucheli P (2002) Molecular and biochemical characterisation of two aspartic proteinases TcAP1 and TcAP2 from Theobroma cacao seeds. Planta 215:754–762

    Article  CAS  PubMed  Google Scholar 

  • Levine A, Tenhaken R, Dixon R, Lamb C (1994) H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79:583–593

    Article  CAS  PubMed  Google Scholar 

  • Lu SY, Su W, Li HH, Guo ZF (2009) Abscisic acid improves drought tolerance of triploid bermudagrass and involves H2O2- and NO-induced antioxidant enzyme activities. Plant Physiol Biochem 47:132–138

    Article  CAS  PubMed  Google Scholar 

  • Mao XG, Zhang HY, Qian XY, Li A, Zhao GY, Jing RL (2012) TaNAC2, a NAC-type wheat transcription factor conferring enhanced multiple abiotic stress tolerances in Arabidopsis. J Exp Bot 63:2933–2946

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Ouyang SQ, Liu YF, Liu P, Lei G, He SJ, Ma B, Zhang WK, Zhang JS, Chen SY (2010) Receptor-like kinase OsSIK1 improves drought and salt stress tolerance in rice (Oryza sativa) plants. Plant J 62:316–329

    Article  CAS  PubMed  Google Scholar 

  • Pei ZM, Kuchitsu K, Ward JM, Schwarz M, Schroeder JI (1997) Differential abscisic acid regulation of guard cell slow anion channels in Arabidopsis wild-type and abi1 and abi2 mutants. Plant Cell 9:409–423

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Saleki R, Young PG, Lefebvre DD (1993) Mutants of Arabidopsis-thaliana capable of germination under saline conditions. Plant Physiol 101:839–845

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227

    Article  CAS  PubMed  Google Scholar 

  • Simoes I, Faro C (2004) Structure and function of plant aspartic proteinases. Eur J Biochem 271:2067–2075

    Article  CAS  PubMed  Google Scholar 

  • Smirnoff N (1993) The role of active oxygen in the response of plants to water-deficit and desiccation. New Phytol 125:27–58

    Article  CAS  Google Scholar 

  • Srinivasan T, Kumar KRR, Kirti PB (2009) Constitutive expression of a trypsin protease inhibitor confers multiple stress tolerance in transgenic tobacco. Plant Cell Physiol 50:541–553

    Article  CAS  PubMed  Google Scholar 

  • Strasser A, Srivastava A, Tsimilli-Michael M (2002) The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Mohanty P, Yunus U, Pathre M (eds) Probing photosynthesis: mechanism, regulation and adapation. Taylor and Francis, London, pp 443–480

    Google Scholar 

  • Tardieu F (2012) Any trait or trait-related allele can confer drought tolerance: just design the right drought scenario. J Exp Bot 63:25–31

    Article  CAS  PubMed  Google Scholar 

  • Timotijevic GS, Milisavljevic MD, Radovic SR, Konstantinovic MM, Maksimovic VR (2010) Ubiquitous aspartic proteinase as an actor in the stress response in buckwheat. J Plant Physiol 167:61–68

    Article  CAS  PubMed  Google Scholar 

  • Tormakangas K, Kervinen J, Ostman A, Teeri T (1994) Tissue-specific localization of aspartic proteinase in developing and germinating barley grains. Planta 195:116–125

    Article  Google Scholar 

  • Wang WX, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  CAS  PubMed  Google Scholar 

  • Xia YJ, Suzuki H, Borevitz J, Blount J, Guo ZJ, Patel K, Dixon RA, Lamb C (2004) An extracellular aspartic protease functions in Arabidopsis disease resistance signaling. EMBO J 23:980–988

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xiong LM, Lee BH, Ishitani M, Lee H, Zhang CQ, Zhu JK (2001) FIERY1 encoding an inositol polyphosphate 1-phosphatase is a negative regulator of abscisic acid and stress signaling in Arabidopsis. Gene Dev 15:1971–1984

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803

    Article  CAS  PubMed  Google Scholar 

  • Yan Q, Hou HM, Singer SD, Yan XX, Guo RR, Wang XP (2014) The grape VvMBF1 gene improves drought stress tolerance in transgenic Arabidopsis thaliana. Plant Cell Tiss Org Cul 118:571–582

    Article  CAS  Google Scholar 

  • Yang JC, Zhang JH, Wang ZQ, Zhu QS, Wang W (2001) Hormonal changes in the grains of rice subjected to water stress during grain filling. Plant Physiol 127:315–323

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yao X, Xiong W, Ye TT, Wu Y (2012) Overexpression of the aspartic protease ASPG1 gene confers drought avoidance in Arabidopsis. J Exp Bot 63:2579–2593

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang JJ, Wang YJ, Wang XP, Yang KQ, Yang JX (2003) An improved method for rapidly extracting total RNA from Vitis. Fruit Sci 53:771–787

    Google Scholar 

  • Zhang H, Liu YX, Xu Y, Chapman S, Love AJ, Xia T (2012a) A newly isolated Na +/H + antiporter gene, DmNHX1, confers salt tolerance when expressed transiently in Nicotiana benthamiana or stably in Arabidopsis thaliana. Plant Cell Tiss Org Cul 110:189–200

    Article  CAS  Google Scholar 

  • Zhang LC, Zhao GY, Xia C, Jia JZ, Liu X, Kong XY (2012b) A wheat R2R3-MYB gene, TaMYB30-B, improves drought stress tolerance in transgenic Arabidopsis. J Exp Bot 63:5873–5885

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhu ZG, Shi JL, Cao JL, He MY, Wang YJ (2012) VpWRKY3, a biotic and abiotic stress-related transcription factor from the Chinese wild Vitis pseudoreticulata. Plant Cell Rep 31:2109–2120

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (31272136), the 948 Project from the Ministry of Agriculture of China (2012-S12), as well as the Program for Innovative Research Team of Grape Germplasm Resources and Breeding (2013KCT-25). We thank PlantScribe (www.plantscribe.com) for editing this manuscript.

Conflict of interest

There are no competing interests in this paper, and the authors do not have any possible conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiping Wang.

Additional information

The nucleotide sequence reported in this paper has been submitted to GeneBank with accession numbers KM210287.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 458 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, R., Zhao, J., Wang, X. et al. Constitutive expression of a grape aspartic protease gene in transgenic Arabidopsis confers osmotic stress tolerance. Plant Cell Tiss Organ Cult 121, 275–287 (2015). https://doi.org/10.1007/s11240-014-0699-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-014-0699-6

Keywords

Navigation