Skip to main content
Log in

Tissue-specific localization of aspartic proteinase in developing and germinating barley grains

  • Published:
Planta Aims and scope Submit manuscript

Abstract

Resting seeds of several plant species, including barley grains, have been reported to contain aspartic proteinase (EC 3.4.23) activity. Here, the expression of the Hordeum vulgare L. aspartic proteinase (HvAP) was studied in developing and germinating grains by activity measurements as well as by immunocytochemical and in-situ hybridization techniques. Southern blotting suggests the presence of one to two HvAP-encoding genes in the barley genome, while Northern analysis reveals a single 2.1-kb mRNA in grains and vegetative tissues. Western blotting with antibodies to HvAP shows the same subunit structure in different grain parts. In developing grains, HvAP is produced in the embryo, aleurone layer, testa and pericarp, but in the starchy endosperm HvAP is present only in the crushed and depleted area adjacent to the scutellum. During seed maturation, HvAP-encoding mRNA remains in the aleurone layer and in the embryo, but the enzyme disappears from the aleurone cells. The enzyme, however, remains in the degenerating tissues of the testa and pericarp as well as in resting embryo and scutellum. During the first three days of germination, the enzyme reappears in the aleurone layer cells but is not secreted into the starchy endosperm. The HvAP is also expressed in the flowers, stem, leaves, and roots of barley. The wide localization of HvAP in diverse tissues suggests that it may have several functions appropriate to the needs of different tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DAA:

days after anthesis

DTT:

dithiothreitol

HvAP:

Hordeum vulgare aspartic proteinase

References

  • Belozersky, M.A., Sarbakanova, Sh.T., Dunaevsky, Ya.E. (1989) Aspartic proteinase from wheat seeds: isolation, properties and action on gliadin. Planta 177, 321–326

    Google Scholar 

  • Bewley, J.D., Black, M., eds. (1986) Seeds — physiology of development and germination, 2nd edn., pp. 158–164, Plenum Press, New York

    Google Scholar 

  • Blum, J.S., Fiani, M.L., Stahl, P.D. (1991) Localization of cathepsin D in endosomes: characterization and biological importance. In: Structure and function of the aspartic proteinases, pp. 281–287, Dunn, B.M., ed. Plenum Press, New York

    Google Scholar 

  • Bond, H.M., Bowles, D.J. (1983) Characterization of soybean endopeptidase activity using exogenous and endogenous substrates. Plant Physiol. 72, 345–350

    Google Scholar 

  • Bosnes, M., Weideman, F., Olsen, O.-A. (1992) Endosperm differentiation in barley wild-type and sex mutants. Plant J. 2, 661–674

    Google Scholar 

  • Bourgeois, J., Malek, L. (1991) Purification and characterization of an aspartyl proteinase from dry jack pine seeds. Seed Sci. Res 1, 139–147

    Google Scholar 

  • Bradford, M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254

    Article  CAS  PubMed  Google Scholar 

  • Campbell, D.J. (1987) Circulating and tissue angiotensin systems. J. Clin. Invest. 79, 1–6

    Google Scholar 

  • Cordeiro, M., Jakob, E., Puhan, Z., Pais, M.S., Brodelius, P.E. (1992) Milk clotting and proteolytic activities of purified cynarases from Cynara cardunculusa — a comparison to chymosin. Milchwissenschaft 47, 683–687

    Google Scholar 

  • Cox, K.H., Goldberg, R.B. (1988) Analysis of plant gene expression. In: Plant molecular biology — a practical approach, pp. 1–35, Shaw, C.H., ed. IRL Press, Oxford Washington DC

    Google Scholar 

  • Davies, D.R. (1990) The structure and function of the aspartic proteinases. Annu. Rev. Biophys. Biophys. Chem. 19, 189–215

    Google Scholar 

  • Dellaporta, S.L., Wood, J., Hicks, J.B. (1983) A plant DNA minipreparation: version II. Plant Mol. Biol. Rep. 1, 19–21

    Google Scholar 

  • D'Hondt, K., Bosch, D., VanDamme, J., Goethals, M., Vandekerckhove, J., Krebbers, E. (1993) An aspartic proteinase present in seeds cleaves Arabidopsis 2S albumin precursors in vitro. J. Biol. Chem. 268, 20884–20891

    Google Scholar 

  • Doi, E., Shibata, D., Matoba, T., Yonezawa, D. (1980) Characterization of pepstatin-sensitive acid protease in resting rice seeds. Agric. Biol. Chem. 44, 741–747

    Google Scholar 

  • Duffus, C.M., Cochrane, M.P. (1992) Grain structure and composition. In: Barley: genetics, biochemistry, molecular biology and biotechnology, pp. 291–317, Shewry, P.R., ed, C.A.B. International, Wallingford UK

    Google Scholar 

  • Dunaevsky, Y.E., Sarbakanova, S.T., Belozersky, M.A. (1989) Wheat seed carboxypeptidase and joint action on gliadin of proteases from dry and germinating seeds. J. Exp. Bot. 40, 1323–1329

    Google Scholar 

  • Elpidina, E.N., Dunaevsky, Y.E., Belozersky, M.A. (1990) Protein bodies from buckwheat seed cotyledons: isolation and characteristics. J. Exp. Bot. 41, 969–977

    Google Scholar 

  • Faro, C.J., Moir, A.J.G., Pires, E.V. (1992) Specificity of a milk clotting enzyme extracted from the thistle Cynara cardunculus L. action on oxidised insulin and к-casein. Biotech. Lett. 14, 841–846

    Google Scholar 

  • Foltmann, B. (1992) Chymosin: a short review on foetal and neonatal gastric proteases. Scand. J. Clin. Lab. Invest. 52 (Suppl. 210), 65–79

    Google Scholar 

  • Gallie, D.R. (1993) Posttranscriptional regulation of gene expression in plants. Annu. Rev. Plant. Physiol. Plant. Mol. Biol. 44, 77–105

    Google Scholar 

  • Gottschalk, S., Waheed, A., Schmidt, B., Laidler, P., vonFigura, K. (1989) Sequential processing of lysosomal acid phosphatase by a cytoplasmic thiol proteinase and a lysosomal aspartyl proteinase. EMBO J. 8, 3215–3219

    Google Scholar 

  • Grandbastien, M-A., Spielmann, A., Caboche, M. (1989) Tnt1, a mobile retroviral-like transposable element of tobacco isolated by plant cell genetics. Nature 337, 376–380

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto, H., Nishi, R., Uchimiya, H., Kalo, A. (1992) Nucleotide sequence of a cDNA encoding aspartic proteinase in rice. Accession number D12777, submitted (August 1, 1992) to the DNA database of Japan

  • Heimgartner, U., Pietrzak, M., Geertsen, R., Brodelius, P., daSiiva Figueiredo, A.C., Pais, M.S.S. (1990) Purification and partial characterization of milk clotting proteases from flowers of Cynara cardunculus. Phytochemistry 29, 1405–1410

    Article  CAS  Google Scholar 

  • Henderson, C. (1989) Aminoalkylsilane: an inexpensive, simple preparation for slide adhesion. J. Histotech. 12, 123–124

    Google Scholar 

  • Holwerda, B.C., Galvin, N.J., Baranski, T.J., Rogers, J.C. (1990) In vitro processing of aleurain, a barley vacuolar thiol protease. Plant Cell 2, 1091–1106

    Google Scholar 

  • Kervinen, J., Kontturi, M., Mikola, J. (1990) Changes in the proteinase composition of barley leaves during senescence in field conditions. Cereal Res. Commun. 18, 191–197

    Google Scholar 

  • Kervinen, J., Sarkkinen, P., Kalkkinen, N., Mikola, L., Saarma, M. (1993) Hydrolytic specificity of the barley grain aspartic proteinase. Phytochemistry 32, 799–803

    Google Scholar 

  • Koehler, S.M., Ho, T.-H.D. (1990) Hormonal regulation, processing, and secretion of cysteine proteinases in barley aleurone layers. Plant Cell 2, 769–783

    Google Scholar 

  • Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685

    PubMed  Google Scholar 

  • MacGregor, A.W., Dushnicky, L. (1989) Starch degradation in endosperms of developing barley kernels. J. Inst. Brew. 95, 321–325

    Google Scholar 

  • Manninen, I., Schulman, A.H. (1993) BARE-1, a copia-like retroelement in barley (Hordeum vulgäre L.). Plant Mol. Biol. 22, 829–846

    Google Scholar 

  • Marttila, S., Porali, I., Mikkonen, A. (1992) Expression of different acid proteinases in germinating barley seed. (Abstr.) Micron Microsc. Acta 23, 107–108

    Google Scholar 

  • Mechler, B., Hirsch, H.H., Müller, H., Wolf, D.H. (1988) Biogenesis of the yeast lysosome (vacuole): biosynthesis and maturation of proteinase yscB. EMBO J. 7, 1705–1710

    Google Scholar 

  • Mikola, J. (1987) Proteinases and peptidases in germinating cereal grains. In: Fourth international symposium on pre-harvest sprouting in cereals, pp. 463–473, Mares, D.J., ed. Westview Press, Boulder Colorado

    Google Scholar 

  • Morris, P.C., Miller, R.C., Bowles, D.J. (1985) Endopeptidase activity in dry harvest-ripe wheat and barley grains. Plant Sci. 39, 121–124

    Google Scholar 

  • Nishimura, Y., Kawabata, T., Furuno, K., Kato, K. (1989) Evidence that aspartic proteinase is involved in the proteolytic processing event of procathepsin L in lysosomes. Arch. Biochem. Biophys. 271, 400–406

    Google Scholar 

  • Peumans, W.J., Delaey, B.M., Manickam, A., Carlier, A.R. (1980) Efficient translation of long-lived messengers in extracts from dry pea primary axes — evidence for the presence of lectin mRNA. Planta 150, 286–290

    Google Scholar 

  • Peumans, W.J., Stinissen, H.M., Carlier, A.R. (1982) Lectin synthesis in developing and germinating wheat and rye embryos. Planta 156, 41–44

    Google Scholar 

  • Polanowski, A., Wilusz, T., Kolaczkowska, M.K., Wieczorek, M., Wilimowska-Pelc, A. (1985) Purification and characterization of aspartic proteinases from Cucumis sativus and Cucurbita maxima seeds. In: Aspartic proteinases and their inhibitors, pp. 49–52, Kostka, V., ed. Walter de Gruyter, Berlin New York

    Google Scholar 

  • Poulie, M., Jones, B.L. (1988) A proteinase from germinating barley. I. Purification and some physical properties of a 30 kD cysteine endoproteinase from green malt. Plant Physiol. 88, 1454–1460

    Google Scholar 

  • Retzek, H., Steyrer, E., Sanders, E.J., Nimpf, J., Schneider, W.J. (1992) Molecular cloning and functional characterization of chicken cathepsin D, a key enzyme for yolk formation. DNA and Cell Biol. 11, 661–672

    Google Scholar 

  • Rodrigo, I., Vera, P., VanLoon, L.C., Conejero, V. (1991) Degradation of tabacco pathogenesis-related proteins. Plant Physiol. 95, 616–622

    Google Scholar 

  • Runeberg-Roos, P., Törmäkangas, K., Östman, A. (1991) Primary structure of a barley-grain aspartic proteinase — a plant aspartic proteinase resembling mammalian cathepsin D. Eur. J. Biochem. 202, 1021–1027

    Google Scholar 

  • Runeberg-Roos, P., Kervinen, J., Kovaleva, V., Raikhel, N.V., Gal, S. (1994) The aspartic proteinase of barley is a vacuolar enzyme that processes probarley lectin in vitro. Plant Physiol. 105, 321–329

    Google Scholar 

  • Sambrook, J., Fritsch, E.F., Maniatis, T., eds. (1989) Molecular cloning — a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Sarkkinen, P., Kalkkinen, N., Tilgmann, C., Siuro, J., Kervinen, J., Mikola, L. (1992) Aspartic proteinase from barley grains is related to mammalian lysosomal cathepsin D. Planta 186, 317–323

    Google Scholar 

  • St. Angelo, A.J., Ory, R.L., Hansen, H.J. (1969) Localization of an acid proteinase in hempseed. Phytochemistry 8, 1135–1138

    Google Scholar 

  • Szecsi, P.B., ed. (1992) The aspartic proteases. Scand. J. Clin. Lab. Invest. 52 (Suppl. 210), 1–135

    Google Scholar 

  • Tang, J., Wong, R.N.S. (1987) Evolution in the structure and function of aspartic proteases. J Cell. Biochem. 33, 53–63

    Google Scholar 

  • Teichert, U., Mechler, B., Müller, H., Wolf, D.H. (1989) Lysosomal (vacuolar) proteinases of yeast are essential catalysts for protein degradation, differentiation, and cell survival. J. Biol. Chem. 264, 16037–16045

    Google Scholar 

  • Tökés, Z.A., Woon, W.C., Chambers, S.M. (1974) Digestive enzymes secreted by the carnivorous plant Nepenthes macferlanei L. Planta 119, 39–46

    Google Scholar 

  • Umezawa, H. (1976) Structures and activities of protease inhibitors of microbial origin. Methods Enzymol. 45, 678–695

    Google Scholar 

  • Voigt, J., Biehl, B., Heinrichs, H., Kamaruddin, S., Gaim Marsoner, G., Hugi, A. (1994) In-vitro formation of cocoa-specific aroma precursors: aroma-related peptides generated from cocoa-seed protein by co-operation of an aspartic endoprotease and a carboxypeptidase. Food Chem. 49, 173–180

    Google Scholar 

  • Wrobel, R., Jones, B.L. (1992) Appearance of endoproteolytic enzymes during the germination of barley. Plant Physiol. 100, 1508–1516

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirsi Törmäkangas.

Additional information

Both authors have contributed equally to this work

We thank Mart Saarma, Pia Runeberg-Roos, Alan Schulman and Yrjö Helariutta for helpful discussions during the study, Tiina Arna and Sari Makkonen for their help in proteinase activity experiments as well as Jaana Korhonen (Department of Pathology, University of Helsinki), Salla Marttila and Ilkka Porali (Department of Biology, University of Jyväskylä, Jyväskylä, Finland) for their advice on microscopical techniques. We also thank Liisa Pyhälä and Leena Liesirova for the production of the antibodies to HvAP at the National Public Health Institute, Helsinki. This study was supported by grants from the Ministry of Agriculture and Forestry and the Academy of Finland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Törmäkangas, K., Kervinen, J., Östman, A. et al. Tissue-specific localization of aspartic proteinase in developing and germinating barley grains. Planta 195, 116–125 (1994). https://doi.org/10.1007/BF00206299

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00206299

Key words

Navigation