Skip to main content
Log in

The DNA-binding protease, CND41, and the degradation of ribulose-1,5-bisphosphate carboxylase/oxygenase in senescent leaves of tobacco

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Plastids bear their own genome, organized into DNA–protein complexes (nucleoids). Recently, we identified a DNA-binding protease (CND41) in the chloroplast nucleoids of cultured tobacco (Nicotiana tabacum L.) cells. In this study, we examine the biochemical function of this novel DNA-binding protease, particularly in senescent leaves, because antisense tobacco with a reduced amount of CND41 showed retarded senescence. Nitrogen-depletion experiments clearly showed that CND41 antisense tobacco maintained green leaves and constant protein levels, especially ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), throughout the whole plant, whereas wild-type tobacco showed marked senescence and the reduction of protein levels in the lower leaves. In vitro analyses confirmed that CND41 showed proteolytic activity at physiological pH when denatured Rubisco was used as the substrate. These results suggest that CND41 is involved in Rubisco degradation and the translocation of nitrogen during senescence. The possible regulation of protease activity of CND41 through DNA-binding is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a, b
Fig. 3a, b
Fig. 4a, b
Fig. 5a–c
Fig. 6a–c
Fig. 7

Similar content being viewed by others

Abbreviations

CABP :

2-Carboxyarabinitol-1,5-bisphosphate

CBB :

Coomassie Brilliant Blue

GS :

Glutamine synthetase

OEC33 :

The extrinsic 33-kDa protein in the oxygen-evolving complex

Rubisco :

Ribulose 1,5-bisphosphate carboxylase/oxygenase

References

  • Bleecker AB (1998) The evolutionary basis of leaf senescence: method to the madness? Curr Opin Plant Biol 1:73–78

    CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Buchanan-Wollaston V (1997) The molecular biology of leaf senescence. J Exp Bot 307:181–199

    Google Scholar 

  • Desimone M, Henke A, Wagner E (1996) Oxidative stress induces partial degradation of the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase in isolated chloroplasts of barley. Plant Physiol 111:789–796

    CAS  PubMed  Google Scholar 

  • Desimone M, Wagner E, Johanningmeier U (1998) Degradation of active-oxygen-modified ribulose-1,5-bisphosphate carboxylase/oxygenase by chloroplastic proteases requires ATP-hydrolysis. Planta 205:459–466

    Article  CAS  Google Scholar 

  • Ferreira RMB, Teixeira ARN (1992) Sulfur starvation in Lemna leads to degradation of ribulose-bisphosphate carboxylase without plant death. J Biol Chem 267:7253–7257

    CAS  PubMed  Google Scholar 

  • Ford DM, Shibles R (1988) Photosynthesis and other traits in relation to chloroplast number during soybean leaf senescence. Plant Physiol 86:108–111

    CAS  Google Scholar 

  • Fu GK, Smith MJ, Markovitz DM (1997) Bacterial protease Lon is a site-specific DNA-binding protein. J Biol Chem 272:534–538

    Article  CAS  PubMed  Google Scholar 

  • Gan S, Amasino RM (1997) Making sense of senescence (molecular genetic regulation and manipulation of leaf senescence). Plant Physiol 113:313–319

    CAS  PubMed  Google Scholar 

  • García-Ferris C, Moreno J (1994) Oxidative modification and breakdown of ribulose 1,5-bisphosphate carboxylase/oxygenase induced in Euglena gracilis by nitrogen starvation. Planta 193:208–215

    Google Scholar 

  • Glathe S, Kervinen J, Nimtz M, Li GH, Tobin GJ, Copeland TD, Ashford DA, Wlodawer A, Costa J (1998) Transport and activation of the vacuolar aspartic proteinase phytepsin in barley (Hordeum vulgare L.). J Biol Chem 273:31230–31236

    Article  CAS  PubMed  Google Scholar 

  • Gutteridge S, Gatenby AA (1995) Rubisco synthesis, assembly, mechanism, and regulation. Plant Cell 7:809–829

    Article  CAS  PubMed  Google Scholar 

  • He GP, Muise A, Li AW, Ro HS (1995) A eukaryotic transcriptional repressor with carboxypeptidase activity. Nature 378:92–96

    Article  CAS  PubMed  Google Scholar 

  • Hortensteiner S, Feller U (2002) Nitrogen metabolism and remobilization during senescence. J Exp Bot 370:927–937

    Article  Google Scholar 

  • Inada N, Sakai A, Kuroiwa H, Kuroiwa T (1998) Three-dimensional analysis of the senescence program in rice (Oryza sativa L.) coleoptiles. Investigations of tissues and cells by fluorescence microscopy. Planta 205:153–164

    Article  CAS  PubMed  Google Scholar 

  • Ishida H, Nishimori Y, Sugisawa M, Makino A, Mae T (1997) Large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase is fragmented into 37-kDa and 16-kDa polypeptides by active oxygen in the lysates of chloroplasts from primary leaves of wheat. Plant Cell Physiol 38:471–479

    CAS  PubMed  Google Scholar 

  • Ishida H, Makino A, Mae T (1999) Fragmentation of the large subunit of ribulose-1,5-bisphosphate carboxylase by reactive oxygen species occurs near Gly-329. J Biol Chem 274:5222–5226

    Article  CAS  PubMed  Google Scholar 

  • Ishii Y, Amano F (2001) Regulation of SulA cleavage by Lon protease by the C-terminal amino acid of SulA, histidine. Biochem J 358:473–480

    Article  CAS  PubMed  Google Scholar 

  • James MNG, Sielecki AR (1986) Molecular structure of an aspartic protease zymogen, porcine pepsinogen, at 1.8 Å resolution. Nature 319:33–38

    CAS  PubMed  Google Scholar 

  • Jiang CZ, Rodermel SR (1995) Regulation of photosynthesis during leaf development in rbcS antisense DNA mutants of tobacco. Plant Physiol 107:215–224

    CAS  PubMed  Google Scholar 

  • Jiang CZ, Rodermel SR, Shibles RM (1993) Photosynthesis, rubisco activity and amount, and their regulation by transcription in senescing soybean leaves. Plant Physiol 101:105–112

    CAS  PubMed  Google Scholar 

  • Kervinen J, Tobin GJ, Costa J, Waugh DS, Wlodawer A, Zdanov A (1999) Crystal structure of plant aspartic proteinase prophytepsin: inactivation and vacuolar targeting. EMBO J 18:3947–3955

    Article  CAS  PubMed  Google Scholar 

  • Koelsch G, Mares M, Metcalf P, Fusek M (1994) Multiple functions of pro-parts of aspartic proteinase zymogens. FEBS Lett 343:6–10

    Article  CAS  PubMed  Google Scholar 

  • Law RD, Crafts-Brandner SJ (2001) High temperature stress increases the expression of wheat leaf ribulose-1,5-bisphosphate carboxylase/oxygenase activase protein. Arch Biochem Biophys 386:261–267

    Article  CAS  PubMed  Google Scholar 

  • Lee RH, Wang CH, Huang LT, Chen SC (2001) Leaf senescence in rice plants: cloning and characterization of senescence up-regulated genes. J Exp Bot 52:1117–1121

    Article  CAS  PubMed  Google Scholar 

  • Lim OP, Woo RH, Nam GH (2003) Molecular genetics of leaf senescence in Arabidopsis. Trends Plant Sci 6:272–278

    Article  Google Scholar 

  • Linsmaier EM, Skoog F (1965) Organic growth factor requirements of tobacco tissue cultures. Physiol Plant 18:100–127

    CAS  Google Scholar 

  • Mae T, Makino A, Ohira K (1983) Change in the amounts of ribulose bisphosphate carboxylase synthesized and degraded during the life span of rice leaf (Oryza sativa L.) Plant Cell Physiol 24:1079–1086

    Google Scholar 

  • Makino A, Mae T, Ohira K (1984) Relation between nitrogen and ribulose-1,5-bisphosphate carboxylase in rice leaves from emergence through senescence. Plant Cell Physiol 25:429–437

    CAS  Google Scholar 

  • Masclaux C, Valadier MH, Brugiere N, Morot-Gaudry JF, Hire B (2000) Characterization of the sink/source transition in tobacco (Nicotiana tabacum L.) shoots in relation to nitrogen management and leaf senescence. Planta. 211:510–518

    Google Scholar 

  • Murakami S, Nakano T, Sato F (2000) Protease activity of CND41, a chloroplast nucleoid DNA-binding protein, isolated from cultured tobacco cells. FEBS Lett 468:15–18

    Article  CAS  PubMed  Google Scholar 

  • Nagy F, Kay SA, Chua NH (1988) Analysis of gene expression in transgenic plants. In: Gelvin SB, Schilperoort RA, Verma DPS (eds) Plant molecular biology manual, vol 4. Kluwer, Dordrecht, pp 1–29

  • Nakano T, Murakami S, Shoji T, Yoshida S, Yamada Y, Sato F (1997) A novel protein with DNA binding activity from tobacco chloroplast nucleoids. Plant Cell 9:1673–1682

    Article  CAS  PubMed  Google Scholar 

  • Nakano T, Nagata N, Kimura T, Sekimoto M, Kawaide H, Merakam S, Kaneko Y, Matsushima H, Kamiya Y, Sato F, Yoshida S (2003) CND41 chloroplast nucleoid protein that regulates plastid development, causes reduced gibberellin content and dwarfism in tobacco. Physiol Plant 117:130–136

    CAS  Google Scholar 

  • Nam HG (1997) The molecular genetic analysis of leaf senescence. Curr Opin Biotechnol 8:200–207

    Article  CAS  PubMed  Google Scholar 

  • Ohta M, Sugita M, Sugiura M (1995) Three types of nuclear genes encoding chloroplast RNA-binding proteins (cp29, cp31 and cp33) are present in Arabidopsis thaliana: presence of cp31 in chloroplasts and its homologue in nuclei/cytoplasms. Plant Mol Biol 27:529–39

    CAS  PubMed  Google Scholar 

  • Portis AR Jr (1992) Regulation of ribulose 1,5-bisphosphate carboxylase/oxygenase activity. Annu Rev Plant Physiol Plant Mol Biol 43:415–437

    Article  CAS  Google Scholar 

  • Sodmergen SK, Kawano S, Tano S, Kuroiwa T (1989) Preferential digestion of nuclei (nucleoids) during senescence of coleoptile of Oryza sativa. Protoplasma 152:65–68

    Google Scholar 

  • Thomas H, De-Villiers L (1996) Gene expression in leaves of Arabidopsis thaliana induced to senesce by nutrient deprivation. J Exp Bot 47:1845–1852

    CAS  Google Scholar 

  • Tobin AK, Yamaya T (2001) Cellular compartmentation of ammonium assimilation in rice and barley. J Exp Bot 356:591–604

    Article  Google Scholar 

  • Walker GC (1995) SOS-regulated proteins in translesion DNA synthesis and mutagenesis. Trends Biochem Sci 20:416–20

    Article  CAS  PubMed  Google Scholar 

  • Whitney SM, von Caemmerer S, Hudson GS, Andrews TJ (1999) Directed mutation of the Rubisco large subunit of tobacco influences photorespiration and growth. Plant Physiol 121:579–588

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto Y, Ishikawa Y, Nakatani E, Yamada M, Zhang H, Wydrzynski T (1998) Role of an extrinsic 33 kilodalton protein of photosystem II in the turnover of the reaction center-binding protein D1 during photoinhibition. Biochemistry 37:1565–1574

    Article  CAS  PubMed  Google Scholar 

  • Yamaya T, Hayakawa T, Tanasawa K, Kamachi K, Mae T, Ojima K (1992) Tissue distribution of glutamate synthase and glutamine synthetase in rice leaves. Occurrence of NADH-dependent glutamate synthase protein and activity in the unexpanded non green leaf blades. Plant Physiol 100:1427–1432

    CAS  Google Scholar 

  • Yang J, Teplyakov A, Quail JW (1997) Crystal structure of the aspartic proteinase from Rhizomucor miehei. J Mol Biol 268:449–459

    Article  CAS  PubMed  Google Scholar 

  • Yokota A, Kitaoka S (1989) Linearity and functioning forms in carboxylase reaction of spinach riburose 1,5-bisphosphate carboxylase/oxygenase. Plant Cell Physiol 30:183–190

    CAS  Google Scholar 

  • Yoshida S (2003) Molecular regulation of leaf senescence. Curr Opin Plant Biol 6:79–84

    Article  CAS  PubMed  Google Scholar 

  • Yoshimura K, Yabuta Y, Tamoi M, Ishikawa T, Shigeoka S (1999) Alternatively spliced mRNA variants of chloroplast ascorbate peroxidase isoenzymes in spinach leaves. Biochem J 338:41–48

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the late Dr. A. Watanabe at the University of Tokyo, Dr. T. Yamaya at Tohoku University, Dr. M. Sugita at Nagoya University and Dr. M. Shigeoka at Kinki University for their kind gifts of anti-OEC33, anti-glutamine synthetase, anti-chloroplast ribonucleoproteins and anti-ascorbate peroxidase antibodies, respectively. This research was supported in part by grants-in-aid from the Ministry of Education, Science, Culture and Sports of Japan (to F.S.; No. 09274103) and the Future Program Grant JSPS-RFTF00L01606 from the Japan Society for the Promotion of Science (to F.S.). Y. Kato and S. Murakami contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fumihiko Sato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kato, Y., Murakami, S., Yamamoto, Y. et al. The DNA-binding protease, CND41, and the degradation of ribulose-1,5-bisphosphate carboxylase/oxygenase in senescent leaves of tobacco. Planta 220, 97–104 (2004). https://doi.org/10.1007/s00425-004-1328-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-004-1328-0

Keywords

Navigation