Skip to main content
Log in

AtPGK2, a member of PGKs gene family in Arabidopsis, has a positive role in salt stress tolerance

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Phosphoglycerate kinase (PGK) plays a critical role not only in photosynthetic carbon metabolism but also in glycolysis and gluconeogenesis. Although a large number of PGKs have been cloned and purified from a variety of plant sources, their physiological functions in response to abiotic stresses still remain elusive. Here we identified and characterized a member of PGKs gene family, AtPGK2, from Arabidopsis thaliana. Sequence analysis showed that AtPGK2 had high sequence similarity to PGKs proteins from other species. By using quantitative reverse transcription-polymerase chain reaction and histochemical β-glucuronidase assays, we demonstrated that AtPGK2 was mainly expressed in germinating seeds and flowers, and it could be induced significantly by salt stress. Through morphological and physiological analyses, we found that over-expression of AtPGK2 conferred salt tolerance in transgenic Arabidopsis plants. Furthermore, AtPGK2-overexpressing plants showed enhanced expression of stress-responsive marker genes, including RD29A, RD29B, KIN1 and KIN2. Collectively, our results suggested that over-expression of AtPGK2 in Arabidopsis decreased plant sensitivity to salt stress, and AtPGK2 may play a positive role in salt stress tolerance. To our knowledge, this is the first study on the physiological functions of PGK in response to salt stress in higher plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BPG:

Bisphosphoglycerate

CaMV:

Cauliflower mosaic virus

CDS:

Coding sequence

Col:

Columbia-0

GUS:

β-Glucuronidase

kDa:

Kilodaltons

MW:

Molecular weight

PG:

Phosphoglycerate

PGK:

Phosphoglycerate kinase

pI:

Isoelectric poin

RT-PCR:

Reverse transcription-polymerase chain reaction

References

  • Alefounder PR, Perham RN (1989) Identification, molecular cloning and sequence analysis of a gene cluster encoding the class II fructose 1,6-bisphosphate aldolase, 3-phosphoglycerate kinase and a putative second glyceraldehydes 3-phosphate dehydrogenase of Escherichia coli. Mol Microbiol 3:723–732

    Article  CAS  PubMed  Google Scholar 

  • Artus N, Gilmour SJ, Thomashow MF (1991) Evidence for a cold regulated Arabidopsis gene, cor6.6 that is highly homologous with the cold induced gene KIN1. Plant Physiol 96:S-82

    Google Scholar 

  • Ashraf M (1994) Breeding for salinity tolerance proteins in plants. Crit Rev Plant Sci 13:17–42

    Article  Google Scholar 

  • Bajji M, Kinet JM, Lutts S (2001) The use of the electrolyte leakage method for assessing cell membrane stability as a water stress tolerance test in durum wheat. Plant Growth Regul 36:61–70

    Article  Google Scholar 

  • Banks RD, Blake CCF, Evans PR, Haser R, Rice DW, Hardy GW, Merrett M, Phillips AW (1979) Sequence, structure and activity of phosphoglycerate kinase: a possible hinge-bending enzyme. Nature 279:773–777

    Article  CAS  PubMed  Google Scholar 

  • Bannai H, Tamada Y, Maruyama O, Nakai K, Miyano S (2002) Extensive feature detection of N-terminal protein sorting signals. Bioinformatics 18:298–305

    Article  CAS  PubMed  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58

    Article  CAS  Google Scholar 

  • Bertsch U, Schlicher TB, Schroder I, Soll J (1993) Sequence of mature phosphoglycerate kinase from spinach chloroplasts. Plant Physiol 103:1449–1450

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bies-Etheve N, Gaubier-Comella P, Debures A, Lasserre E, Jobet E, Raynal M, Cooke R, Delseny M (2008) Inventory, evolution and expression profiling diversity of the LEA (Late Embryogenesis Abundant) protein gene family in Arabidopsis thaliana. Plant Mol Biol 67:107–124

    Article  CAS  PubMed  Google Scholar 

  • Blake CCF, Rice DW (1981) Phosphoglycerate kinase. Philos Trans R Soc Lond B Biol Sci 293:93–104

    Article  CAS  PubMed  Google Scholar 

  • Blake CCF, Evans PR, Scopes RK (1972) Structure of horse-muscle phosphoglycerate kinase at 6 Å resolution. Nat New Biol 235:195–198

    Article  CAS  PubMed  Google Scholar 

  • Cadieux C, Sarhan F, Perras M (1988) Osmotic adjustment and photosynthetic electron transport response to cold hardening in winter and spring wheat. Plant Physiol Biochem 26:313–322

    CAS  Google Scholar 

  • Chauvin LP, Houde M, Sarhan F (1993) A leaf-specific gene stimulated by light during wheat acclimation to low temperature. Plant Mol Biol 23:255–265

    Article  CAS  PubMed  Google Scholar 

  • Chiarelli LR, Morera SM, Bianchi P, Fermo E, Zanella A, Galizzi A, Valentini G (2012) Molecular insights on pathogenic effects of mutations causing phosphoglycerate kinase deficiency. PLoS ONE 7:e32065

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Crone D, Rueda J, Martin KL, Hamilton DA, Mascarenhas JP (2001) The differential expression of a heat shock promoter in floral and reproductive tissues. Plant Cell Environ 24:869–874

    Article  CAS  Google Scholar 

  • Kitayama M, Togasaki RK (1995) Purification and cDNA isolation of chloroplastic phosphoglycerate kinase from Chlamydomonas reinhardtii. Plant Physiol 107:393–400

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kopke-Secundo E, Molnar I, Schnarrenberger C (1990) Isolation and characterization of the cytosolic and chloroplastic 3-phosphoglycerate kinase from spinach leaves. Plant Physiol 93:40–47

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kosova K, Vitamvas P, Prasil LT, Renaut J (2011) Plant proteome changes under abiotic stress-contribution of proteomics studies to understanding plant stress response. J Proteomics 74:1301–1322

    Article  CAS  PubMed  Google Scholar 

  • Kreps JA, Wu Y, Chang HS, Zhu T, Wang X, Harper JF (2002) Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol 130:2129–2141

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Krietsch WKG, Bucher T (1970) 3-Phosphoglycerate kinase from rabbit sceletal muscle and yeast. Eur J Biochem 17:568–580

    Article  CAS  PubMed  Google Scholar 

  • Kurkela S, Borg-Franck M (1992) Structure and expression of kin2, one of two cold- and ABA-induced genes of Arabidopsis thaliana. Plant Mol Biol 19:689–692

    Article  CAS  PubMed  Google Scholar 

  • Larkindale J, Hall JD, Knight MR, Vierling E (2005) Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol 138:882–897

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lichtenthaler HK, Wellburn AR (1983) Determination of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Trans 11:591–592

    CAS  Google Scholar 

  • Liu Q, Zhang Y, Chen S (2000) Plant protein kinase genes induced by drought, high salt and cold stresses. Chin Sci Bull 45:1153–1157

    Article  CAS  Google Scholar 

  • Liu D, Gong Q, Ma Y, Li P, Li J, Yang S, Yuan L, Yu Y, Pan D, Xu F, Wang NN (2010) cpSecA, a thylakoid protein translocase subunit, is essential for photosynthetic development in Arabidopsis. J Exp Bot 61:1655–1669

    Article  CAS  PubMed  Google Scholar 

  • Lobler M (1998) Two phosphoglycerate kinase cDNAs from Arabidopsis thaliana. DNA Seq 8:247–252

    CAS  PubMed  Google Scholar 

  • Longstaff M, Raines CA, McMorrow EM, Bradbeer JW, Dyer TA (1989) Wheat phosphoglycerate kinase: evidence for recombination between the genes for the chloroplastic and cytosolic enzymes. Nucleic Acids Res 17:6569–6580

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Martin W, Schnarrenberger C (1997) The evolution of the Calvin cycle from prokaryotic to eukaryotic chromosomes: a case study of functional redundancy in ancient pathways through endosymbiosis. Curr Genet 32:1–18

    Article  CAS  PubMed  Google Scholar 

  • McCarrey JR, Thomas K (1987) Human testis-specific PGK gene lacks introns and possesses characteristics of a processed gene. Nature 326:501–505

    Article  CAS  PubMed  Google Scholar 

  • McMorrow EM, Bradbeer JW (1987) The isolation and the immunological properties of chloroplast and cytoplasmic phosphoglycerate kinase from barley. In: Biggens J (ed) Progress in photosynthetic research, vol III. Martinus Nijhoff Publ, Dordrecht, pp 483–486

    Chapter  Google Scholar 

  • McMorrow EM, Bradbeer JW (1990) Separation, purification, and comparative properties of chloroplast and cytoplasmic phosphoglycerate kinase from barley leaves. Plant Physiol 93:374–383

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Michelson AM, Blake CC, Evans ST, Orkin SH (1985) Structure of the human phosphoglycerate kinase gene and the intron-mediated evolution and dispersal of the nucleotide-binding domain. Proc Natl Acad Sci USA 82:6965–6969

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Oquist G, Vaughan MH, Huner NPA (1993) Low-temperature effects on photosynthesis and correlation with freezing tolerance in spring and winter cultivars of wheat and rye. Plant Physiol 101:245–250

    PubMed Central  PubMed  Google Scholar 

  • Ouibrahim L, Mazier M, Estevan J, Pagny G, Decroocq V, Desbiez C, Moretti A, Gallois JL, Caranta C (2014) Cloning of the Arabidopsis rwm1 gene for resistance to Watermelon mosaic virus points to a new function for natural virus resistance genes. Plant J. doi:10.1111/tpj.12586

    PubMed  Google Scholar 

  • Pacold I, Anderson LE (1975) Chloroplast and cytoplasmic enzymes. VI. Pea leaf 3-phosphoglycerate kinases. Plant Physiol 55:168–171

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rao SK, Bringloe DH, Dyer TA, Raines CA, Bradbeer JW (1995) Nucleotide sequences of cDNAs encoding the chloroplastic and cytosolic phosphoglycerate kinases (Genbank Z48976 and Z48977) from tobacco. Plant Physiol 109:1126

    Google Scholar 

  • Scopes RK (1969) Crystalline 3-phosphoglycerate kinase from skeletal muscle. Biochem J 113:551–554

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shah N, Bradbeer JW (1994) The occurrence of chloroplastic and cytosolic isoenzymes of phosphoglycerate kinase in a range of plant species. Planta 193:232–237

    Article  CAS  Google Scholar 

  • Shi W, Liu D, Hao L, Wu C, Guo X, Li H (2014) GhWRKY39, a member of the WRKY transcription factor family in cotton, has a positive role in disease resistance and salt stress tolerance. Plant Cell Tissue Organ Cult 118:17–32

    Article  CAS  Google Scholar 

  • Small I, Peeters N, Legeai F, Lurin C (2004) Predotar: a tool for rapidly screening proteomes for N-terminal targeting sequences. Proteomics 4:1581–1590

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Wang F, Cai H, Zhao C, Ji W, Zhu Y (2013) Functional characterization of an Arabidopsis prolyl aminopeptidase AtPAP1 in response to salt and drought stresses. Plant Cell Tissue Organ Cult 114:325–338

    Article  CAS  Google Scholar 

  • Troncoso-Ponce MA, Rivoal J, Venegas-Calerón M, Dorion S, Sánchez R, Cejudo FJ, Garcés R, Martínez-Force E (2012) Molecular cloning and biochemical characterization of three phosphoglycerate kinase isoforms from developing sunflower (Helianthus annuus L.) seeds. Phytochemistry 79:27–38

    Article  CAS  PubMed  Google Scholar 

  • Verslues PE, Agarwal M, Katiyar-Agarwal S, Zhu J, Zhu JK (2006) Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J 45:523–539

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Datla R, Georges F, Loewen M, Cutler AJ (1995) Promoters from kin1 and cor6.6, two homologous Arabidopsis thaliana genes: transcriptional regulation and gene expression induced by low temperature, ABA, osmoticum and dehydration. Plant Mol Biol 28:605–617

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Wang M, Liu L, Meng F (2013) Physiological and proteomic responses of diploid and tetraploid black locust (Robinia pseudoacacia L.) subjected to salt stress. Int J Mol Sci 14:20299–20325

    Article  PubMed Central  PubMed  Google Scholar 

  • Watson HC, Littlechild JA (1990) Isoenzymes of phosphoglycerate kinase: evolutionary conservation of the structure of this glycolytic enzyme. Biochem Soc Trans 18:187–190

    CAS  PubMed  Google Scholar 

  • Watson HC, Walker NP, Shaw PJ, Bryant TN, Wendell PL, Fothergill LA, Perkins RE, Conroy SC, Dobson MJ, Tuite MF, Kingsman AJ, Kingsman SM (1982) Sequence and structure of yeast phosphoglycerate kinase. EMBO J 1:1635–1640

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xiong L, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14:S165–S183

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xu X, Guo R, Cheng C, Zhang H, Zhang Y, Wang X (2013) Overexpression of ALDH2B8, an aldehyde dehydrogenase gene from grapevine, sustains Arabidopsis growth upon salt stress and protects plants against oxidative stress. Plant Cell Tissue Organ Cult 114:187–196

    Article  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6:251–264

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang C, Deng W, Tang N, Wang X, Yan F, Lin D, Li Z (2013) Overexpression of ZmAFB2, the maize homologue of AFB2 gene, enhances salt tolerance in transgenic tobacco. Plant Cell Tissue Organ Cult 112:171–179

    Article  CAS  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to give our great thanks to Mrs. Lixia Ma for technical assistance. This work was supported by the National Natural Science Foundation of China (NSFC) (No. 31100185) and the Science Foundation of Jiangxi Provincial Education Department (No. GJJ12243) to Dong Liu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 46 kb)

Supplementary material 2 (DOC 80 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D., Li, W., Cheng, J. et al. AtPGK2, a member of PGKs gene family in Arabidopsis, has a positive role in salt stress tolerance. Plant Cell Tiss Organ Cult 120, 251–262 (2015). https://doi.org/10.1007/s11240-014-0601-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-014-0601-6

Keywords

Navigation