Skip to main content
Log in

Functional characterization of an Arabidopsis prolyl aminopeptidase AtPAP1 in response to salt and drought stresses

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

It has been over 50 years since the first prolyl aminopeptidase gene was identified in Escherichia coli (EC 3.4.11.5). However, up to now, few prolyl aminopeptidases have been reported to regulate osmotic stress tolerance, especially in plant. In this study, we focused on characterization of the biological functions of the Arabidopsis prolyl aminopeptidase AtPAP1 (At2g14260), which positively regulated plant tolerance to salt and drought stresses. Protein sequence alignment revealed that AtPAP1 was evolutionarily conserved among different plant species, and the smaller molecular weight and phylogenetic tree indicated that AtPAP1 belonged to the S33.001 subfamily. By using quantitative real-time PCR assays, we demonstrated that expression of the AtPAP1 gene was rapidly induced by salt and drought stresses. We also found that knockout of the AtPAP1 gene decreased, while AtPAP1 overexpression enhanced plant tolerance to salt and drought stresses. Measurements of the proline contents and the prolyl aminopeptidase activity suggested that the transgenic plants accumulated more free proline and exhibited higher prolyl aminopeptidase activity than the wild type or knockout plants under control conditions, as well as salt and drought stresses. Furthermore, through the GUS activity analysis, we also demonstrated that the AtPAP1 promoter is stress inducible and tissue specific. The AtPAP1-GFP fusion protein was found to localize in the cytoplasm of the onion epidermal cells. In conclusion, we showed that the Arabidopsis AtPAP1 gene could positively regulate plant tolerance to salt and drought stress, maybe by acting as a prolyl aminopeptidase and thereby increasing the concentration of free proline in plant cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

GUS:

β-Glucuronidase

KO:

Knockout

MU:

4-Methylumbelliferone

MW:

Molecular weight

OX:

Overexpression

P5CR:

P5C reductase

P5CS:

∆-1-Pyrroline-5-carboxylate synthetase

PAP:

Prolyl aminopeptidase

pI:

Isoelectric point

PiP:

Proline iminopeptidase

Pro-pNA:

Proline-p-nitroanilide trifluoroacetate

ROS:

Reactive oxygen species

WT:

Wild type

X-Gluc:

5-Bromo-4-chloro-3-indolyl-β-d-glucuronide

References

  • Albertson NH, Koomey M (1997) Molecular cloning and characterization of a proline iminopeptidase from Serratia marcescens: cloning of the enzyme gene and crystallization of the expressed enzyme. J Biochem 122:601–605

    Article  Google Scholar 

  • Allaker RP, Young KA, Hardie JM (1994) Rapid detection of proline iminopeptidase as an indicator of Eikenella corrodens periodontal infection. Lett Appl Microbiol 19:325–327

    Article  CAS  Google Scholar 

  • Barnett NM, Naylor AW (1966) Amino acid and protein metabolism in Bermuda grass during water stress. Plant Physiol 41:1222–1230

    Article  PubMed  CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline in water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Bolumar T, Sanz Y, Aristory MC, Toldra F (2003) Purification and characterization of a prolyl aminopeptidase from Debaryomyces hansenii. Appl Environ Microbiol 69:227–232

    Article  PubMed  CAS  Google Scholar 

  • Chliep MS, Ebert B, Simon-Rosin U, Zoeller D, Fisahn J (2010) Quantitative expression analysis of selected transcription factors in pavement, basal and trichome cells of mature leaves from Arabidopsis thaliana. Protoplasma 241:29–36

    Article  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Cunningham DF, O’Connor B (1997) Proline specific peptidases. Biochim Biophys Acta 1343:160–186

    Article  PubMed  CAS  Google Scholar 

  • Dixon DP, Skipsey M, Grundy NM, Edwards R (2005) Stress-induced protein and protein S-Glutathionylation in Arabidopsis. Plant Physiol 138:2233–2244

    Article  PubMed  CAS  Google Scholar 

  • Dolferus R, Ji XM, Richards RA (2011) Abiotic stress and control of grain number in cereals. Plant Sci 181:331–341

    Article  PubMed  CAS  Google Scholar 

  • FitzGerald RJ, O’Cuinn G (2006) Enzymatic debittering of food protein hydrolysates. Biotechnol Adv 24:234–237

    Article  PubMed  CAS  Google Scholar 

  • Gao S, Yuan L, Zhai H, Liu CL, He SZ, Liu QC (2011) Transgenic sweetpotato plants expressing an LOS5 gene are tolerant to salt stress. Plant Cell Tiss Organ Cult 107:205–213

    Article  CAS  Google Scholar 

  • Gilbert C, Atlan D, Banc B, Portalier R (1994) Proline iminopeptidase from Lacto-bacillus delbrueckii subsp. bulgaricus CNRZ 397: purification and characterization. Microbiology 140:537–542

    Article  PubMed  CAS  Google Scholar 

  • Islam SM, Tuteja N (2012) Enhancement of androgenesis by abiotic stress and other pretreatments in major crop species. Plant Sci 182:134–144

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • Jin TC, Chang Q, Li WF, Yin DX, Li ZJ, Wang DL, Liu B, Liu LX (2010) Stress-inducible expression of GmDREB1 conferred salt tolerance in transgenic alfalfa. Plant Cell Tiss Organ Cult 100:219–227

    Article  CAS  Google Scholar 

  • Karthikeyan A, Pandian SK, Ramesh M (2011) Transgenic indica rice cv. ADT 43 expressing a ∆1-pyrroline-5-carboxylate synthetase (P5CS) gene from Vigna aconitifolia demonstrates salt tolerance. Plant Cell Tiss Organ Cult 107:383–395

    Article  CAS  Google Scholar 

  • Kilian J, Whitehead D, Horak J, Wanke D, Weinl S, Batistic O, D’Angelo C, Bornberg-Bauer E, Kudla J, Harter K (2007) The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant J 50:347–363

    Article  PubMed  CAS  Google Scholar 

  • Kishor P, Hong Z, Miao GH, Hu C, Verma D (1995) Overexpression of [delta]-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol 108:1387–1394

    PubMed  CAS  Google Scholar 

  • Kitazono A, Kitano A, Tsuru D, Yoshimoto T (1994) Isolation and characterization of the prolyl aminopeptidase gene (pap) from Aeromonas sobria: comparison with the Bacillus coagulans enzyme. J Biochem 116:818–825

    PubMed  CAS  Google Scholar 

  • Kitazono A, Kitano A, Kabashima T, Ito K, Yoshimoto T (1996) Prolyl aminopeptidase is also present in Enterobacteriaceae: cloning and sequencing of the Hafnia alvei enzyme-gene and characterization of the expressed enzyme. J Biochem 119:468–474

    Article  PubMed  CAS  Google Scholar 

  • Krasensky J, Jonak C (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot 63:1593–1608

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Nei M, Dudley J, Tamura K (2008) MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9:299–306

    Article  PubMed  CAS  Google Scholar 

  • Li N, Wu JM, Zhang LF, Zhang YZ, Feng H (2010) Characterization of a unique proline iminopeptidase from white-rot basidiomycetes Phanerochaete chrysosporium. Biochimie 92:779–788

    Article  PubMed  CAS  Google Scholar 

  • Mahon S, O’Donoghue AJ, Goetz DH, Murray PG, Craik CS, Tuohy MG (2009) Characterization of a multimeric, eukaryotic prolyl aminopeptidase: an inducible and highly specific intracellular peptidase from the non-pathogenic fungus Talaromyces emersonii. Microbiology 155:3673–3682

    Article  PubMed  CAS  Google Scholar 

  • Marinovaa M, Dolashkia A, Altenberend F, Stevanovic S, Voelter W, Tchorbanova B (2008) Characterization of an aminopeptidase and a proline iminopeptidase from cabbage leaves. Z Naturforsch C 63:105–112

    Google Scholar 

  • Miller G, Honig A, Stein H, Suzuki N, Mittler R, Zilberstein A (2009) Unraveling delta1-pyrroline-5-carboxylate-proline cycle in plants by uncoupled expression of proline oxidation enzymes. J Biol Chem 284:26482–26492

    Article  PubMed  CAS  Google Scholar 

  • Mohamed MA, Ibrahim TA (2012) Enhanced in vitro production of Ruta graveolens L. coumarins and rutin by mannitol and ventilation. Plant Cell Tiss Organ Cult 111:335–343

    Article  CAS  Google Scholar 

  • Mueller LA, Hinz U, Uzé M, Sautter C, Zryd JP (1997) Biochemical complementation of the betalain biosynthetic pathway in Portulaca grandiflora by a fungal 3,4-dihydroxyphenylalanine dioxygenase. Planta 203:260–263

    Article  CAS  Google Scholar 

  • Nishiuchi T, Hamada T, Kodama H, Iba K (1997) Wounding changes the spatial expression pattern of the Arabidopsis plastid omega-3 fatty acid desaturase gene (FAD7) through different signal transduction pathways. Plant Cell 9:1701–1712

    PubMed  CAS  Google Scholar 

  • Oviedo Ovando ME, Isola MC, Maldonado AM, Franzoni L (2004) Purification and properties of iminopeptidase from peanut seeds. Plant Sci 166:1143–1148

    Article  CAS  Google Scholar 

  • Patade VY, Bhargava S, Suprasanna P (2012) Effects of NaCl and iso-osmotic PEG stress on growth, osmolytes accumulation and antioxidant defense in cultured sugarcane cells. Plant Cell Tiss Organ Cult 108:279–286

    Article  CAS  Google Scholar 

  • Peng ZH, Peng KQ, Hu JJ, Xiao LT (2002) Reseach progress on accumulation of proline under osmotic stress in plants. Chin Agric Sci Bull 18:80–83

    Google Scholar 

  • Qu LJ, Wu LQ, Fan ZM, Guo L, Li YQ, Chen ZL (2005) Over-expression of the bacterial nhaA gene in rice enhances salt and drought tolerance. Plant Sci 168:297–302

    Article  Google Scholar 

  • Quan XQ, Zhang YJ, Shan L, Bi YP (2007) The roles of prolines in plant growth and the tolerance to abiotic stresses. Lett Biotechnol 18:159–162

    CAS  Google Scholar 

  • Sarid S, Berger A, Katchalski E (1959) Proline iminopeptide. J Biol Chem 234:1740–1746

    PubMed  CAS  Google Scholar 

  • Selby T, Allaker RP, Dymock D (2003) Characterization and expression of adjacent proline iminopeptidase and aspartase genes from Eikenella corrodens. Oral Microbiol Immunol 18:256–259

    Article  PubMed  CAS  Google Scholar 

  • Shangguan XX, Xu B, Yu ZX, Wang LJ, Chen XY (2008) Promoter of a cotton fibre MYB gene functional in trichomes of Arabidopsis and glandular trichomes of tobacco. J Exp Bot 59:3533–3542

    Article  PubMed  CAS  Google Scholar 

  • Somboonwatthanaku I, Dorling S, Leung S, McManus MT (2010) Proline biosynthetic gene expression in tissue cultures of rice (Oryza sativa L.) in response to saline treatment. Plant Cell Tiss Organ Cult 103:369–376

    Article  CAS  Google Scholar 

  • Stein H, Honig A (2011) Elevation of free proline and proline-rich protein levels by simultaneous manipulations of proline biosynthesis and degradation in plants. Plant Sci 181:140–150

    Article  PubMed  CAS  Google Scholar 

  • Stewart GR, Lee JA (1974) Role of proline accumulation in halophytes. Planta 120:279–289

    Article  CAS  Google Scholar 

  • Szabados L, Savoure A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    Article  PubMed  CAS  Google Scholar 

  • Szawłowska U, Zdunek-Zastocka E, Bielawski W (2011) Biochemical characterisation of prolyl aminopeptidase from shoots of triticale seedlings and its activity changes in response to suboptimal growth conditions. Plant Physiol Biochem 49:1342–1349

    Article  PubMed  Google Scholar 

  • Szawłowska U, Grabowska A, Zdunek-Zastocka E, Bielawski W (2012) TsPAP1 encodes a novel plant prolyl aminopeptidase whose expression is induced in response to suboptimal growth conditions. Biochem Biophys Res Commun 419:104–109

    Article  PubMed  Google Scholar 

  • Tocquin P, Corbesier L, Havelange A, Pieltain A, Kurtem E, Bernier G, Périlleux C (2003) A novel high efficiency, low maintenance, hydroponic system for synchronous growth and flowering of Arabidopsis thaliana. BMC Plant Biol 3:2

    Article  PubMed  Google Scholar 

  • Weterings K, Schrauwen J, Wullems G, Twell D (1995) Functional dissection of the promoter of the pollen-specific gene NPT303 reveals a novel pollen-specific, and conserved cis-regulatory element. Plant J 8:55–63

    Article  PubMed  CAS  Google Scholar 

  • Willems E, Leyns L, Vandesompele J (2008) Standardization of real-time PCR gene expression data from independent biological replicates. Anal Biochem 379:127–129

    Article  PubMed  CAS  Google Scholar 

  • Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ (2007) An ‘electronic fluorescent pictograph’ browser for exploring and analyzing large-scale biological data sets. PLoS ONE 2:e718

    Article  PubMed  Google Scholar 

  • Yang YL, Yang F, Li XN, Shi RX, Lu J (2013) Signal regulation of proline metabolism in callus of the halophyte Nitraria tangutorum Bobr. grown under salinity stress. Plant Cell Tiss Organ Cult 112:33–42

    Article  CAS  Google Scholar 

  • Yoshimoto T, Tsuru D (1985) Proline iminopeptidase from Bacillus coagulans: purification and enzymatic properties. J Biochem 97:1477–1485

    PubMed  CAS  Google Scholar 

  • Zhang L, Jia Y, Wang L, Wang R (2007) A proline iminopeptidase gene upregulated in planta by a LuxR homologue is essential for pathogenicity of Xanthomonas campestris pv, campestris. Mol Microbiol 65:121–136

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Heilongjiang Provincial Higher School Science and Technology Innovation Team Building Program (2011TD005), National Natural Science Foundation of China (31171578) and the Heilongjiang Provincial Graduate Student Innovation Research Projects (YJSCX2012-047HLJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanming Zhu.

Additional information

Xiaoli Sun and Feifei Wang equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, X., Wang, F., Cai, H. et al. Functional characterization of an Arabidopsis prolyl aminopeptidase AtPAP1 in response to salt and drought stresses. Plant Cell Tiss Organ Cult 114, 325–338 (2013). https://doi.org/10.1007/s11240-013-0328-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-013-0328-9

Keywords

Navigation