Skip to main content
Log in

Investigation of structural, spectral, and electronic properties of complexes resulting from the interaction of acetonitrile and hypohalous acids

  • Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The theoretical study of the complexes produced from the interactions between hypohalous acids (HOX; X = F, Cl, Br, and I) and acetonitrile (AN) was carried out at the MP2/aug-cc-pVTZ level of theory. Three different conformations were produced, namely, A, B, and C, in which conformations B and C were stabilized by only the N···H HB and the N···X XB interactions, respectively. In contrast, conformation A was stabilized by two O···C TB and H···X HB interactions through a cyclic structure. The characteristics of product complexes were analyzed by various methods such as molecular electrostatic potential (MEP), spectroscopy, binding energy (ΔE0), quantum theory of atoms in molecules (QTAIM), natural bond orbital (NBO), energy decomposition analysis (EDA), electron density differences (EDD), and non-covalent interaction (NCI) index.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author.

References

  1. Scheiner S (2013) The Pnicogen bond: its relation to hydrogen, halogen, and other noncovalent bonds. Acc Chem Res 46:280–288. https://doi.org/10.1021/ar3001316

    Article  CAS  PubMed  Google Scholar 

  2. Müller-Dethlefs K, Hobza P (2000) Noncovalent interactions: a challenge for experiment and theory. Chem Rev 100:143–168. https://doi.org/10.1021/cr9900331

    Article  CAS  PubMed  Google Scholar 

  3. Alkorta I, Blanco F, Solimannejad M, Elguero J (2008) Competition of hydrogen bonds and halogen bonds in complexes of hypohalous acids with nitrogenated bases. J Phys Chem A 112. https://doi.org/10.1021/jp806101t

  4. Dannenberg JJ (1998) An Introduction to hydrogen bonding By George A. Jeffrey (University of Pittsburgh). Oxford University Press: New York and Oxford. 1997. ix + 303 pp. $60.00. ISBN 0–19–509549–9. J Am Chem Soc 120:5604–5604. https://doi.org/10.1021/ja9756331

  5. Jeffrey GA, Saenger W (1991) Hydrogen bonding in biological structures. Springer, Berlin Heidelberg, Berlin, Heidelberg

    Book  Google Scholar 

  6. Scheiner S (2013) Detailed comparison of the pnicogen bond with chalcogen, halogen, and hydrogen bonds. Int J Quantum Chem 113:1609–1620. https://doi.org/10.1002/qua.24357

    Article  CAS  Google Scholar 

  7. Czyznikowska Z (2009) On the importance of electrostatics in stabilization of stacked guanine-adenine complexes appearing in B-DNA crystals. Journal of Molecular Structure: Theochem 895. https://doi.org/10.1016/j.theochem.2008.10.040

  8. Moradkhani M, Naghipour A, Abbasi Tyula Y (2023) Competition and interplay between Hydrogen, Tetrel, and Halogen bonds from interactions of COCl2 and HX (X = F, Cl, Br, and I). Comput Theor Chem 1223:114099. https://doi.org/10.1016/j.comptc.2023.114099

    Article  CAS  Google Scholar 

  9. Desiraju GR, Steiner T (2001) The weak hydrogen bond: in structural chemistry and biology. Int Union Crystal

  10. Clark T, Hennemann M, Murray JS, Politzer P (2007) Halogen bonding: the σ-hole. J Mol Model 13:291–296. https://doi.org/10.1007/s00894-006-0130-2

    Article  CAS  PubMed  Google Scholar 

  11. Auffinger P, Hays FA, Westhof E, Ho PS (2004) Halogen bonds in biological molecules. Proc Natl Acad Sci USA 101. https://doi.org/10.1073/pnas.0407607101

  12. Murray JS, Lane P, Politzer P (2007) A predicted new type of directional noncovalent interaction. In: Int J Quantum Chem

  13. Murray JS, Concha MC, Lane P, Hobza P, Politzer P (2008) Blue shifts vs red shifts in σ-hole bonding. In: J Mol Model

  14. Politzer P, Murray JS, Clark T (2013) Halogen bonding and other σ-hole interactions: a perspective

  15. Politzer P, Lane P, Concha MC, Ma Y, Murray JS (2007) An overview of halogen bonding. J Mol Model 13:305–311. https://doi.org/10.1007/s00894-006-0154-7

    Article  CAS  PubMed  Google Scholar 

  16. Murray JS, Lane P, Clark T, Politzer P (2007) σ-hole bonding: molecules containing group VI atoms. J Mol Model 13:1033–1038. https://doi.org/10.1007/s00894-007-0225-4

    Article  CAS  PubMed  Google Scholar 

  17. Murray JS, Lane P, Politzer P (2008) Simultaneous σ-hole and hydrogen bonding by sulfur- and selenium-containing heterocycles. Int J Quantum Chem 108:2770–2781. https://doi.org/10.1002/qua.21753

    Article  CAS  Google Scholar 

  18. Desiraju GR, Ho PS, Kloo L, Legon AC, Marquardt R, Metrangolo P, Politzer P, Resnati G, Rissanen K (2013) Definition of the halogen bond (IUPAC Recommendations 2013). Pure Appl Chem 85:1711–1713. https://doi.org/10.1351/PAC-REC-12-05-10

    Article  CAS  Google Scholar 

  19. Bouchmella K, Boury B, Dutremez SG, van der Lee A (2007) Molecular assemblies from imidazolyl-containing haloalkenes and haloalkynes: competition between halogen and hydrogen bonding. Chem Eur J 13:6130–6138. https://doi.org/10.1002/chem.200601508

    Article  CAS  PubMed  Google Scholar 

  20. Bauzá A, Ramis R, Frontera A (2014) Computational study of anion recognition based on tetrel and hydrogen bonding interaction by calix[4]pyrrole derivatives. Comput Theor Chem 1038:67–70. https://doi.org/10.1016/j.comptc.2014.04.010

    Article  CAS  Google Scholar 

  21. Grabowski SJ (2014) Tetrel bond-σ-hole bond as a preliminary stage of the SN2 reaction. Phys Chem Chem Phys 16. https://doi.org/10.1039/c3cp53369g

  22. Robertazzi A, Platts JA, Gamez P (2014) Anion{dot operator}{dot operator}{dot operator}Si interactions in an inverse sandwich complex: a computational study. Chemphyschem 15. https://doi.org/10.1002/cphc.201400018

  23. Bauzá A, Mooibroek TJ, Frontera A (2013) Tetrel-bonding interaction: rediscovered supramolecular force? Angew Chemie - Int Ed 52. https://doi.org/10.1002/anie.201306501

  24. Garcia RR, Solomon S (1994) A new numerical model of the middle atmosphere 2. Ozone and related species. J Geophys Res 99. https://doi.org/10.1029/94jd00725

  25. Molina MJ, Rowland FS (1974) Stratospheric sink for chlorofluoromethanes: chlorine atomc-atalysed destruction of ozone. Nature 249. https://doi.org/10.1038/249810a0

  26. Moradkhani M, Naghipour A, Tyula YA, Abbasi S (2023) Competition of hydrogen, tetrel, and halogen bonds in COCl2-HOX (X = F, Cl, Br, I) complexes. J Mol Graph Model 122:108482. https://doi.org/10.1016/j.jmgm.2023.108482

    Article  CAS  PubMed  Google Scholar 

  27. Zabardasti A, Abbasi Tyula Y, Goudarziafshar H (2017) Theoretical investigation of molecular interactions between sulfur ylide and hypohalous acids (HOX, X═F, Cl, Br, and I). J Sulfur Chem 38:119–133. https://doi.org/10.1080/17415993.2016.1246551

    Article  CAS  Google Scholar 

  28. Zabardasti, Abedien, Yunes Abbasi Tyula, and Hamid Goudarziafshar (2017) "Interplay between N··· H, N··· X and π··· X interactions in the complex pairing of pyrazine with hypohalous acids: A NBO and QTAIM (quantum theory of atoms in molecules) analysis." Bull Chem Soc Ethiop 31(2):241–252

  29. Tang Q, Guo Z, Li Q (2014) A quantum chemical study of the structures, stability, and spectroscopy of halogen- and hydrogen-boned complexes between cyanoacetaldehyde and hypochlorous acids. Spectrochim Acta A Mol Biomol Spectrosc 121:157–163. https://doi.org/10.1016/j.saa.2013.10.088

    Article  CAS  PubMed  Google Scholar 

  30. Kakanejadifard A, Japelaghi S, Ghasemian M, Zabardasti A (2015) Theoretical study of molecular interactions of sulfoximine with hypohalous acids HOF, HOCl, and HOBr. Struct Chem 26:23–33. https://doi.org/10.1007/s11224-014-0461-z

    Article  CAS  Google Scholar 

  31. Li Q, Xu X, Liu T, Jing B, Li W, Cheng J, Gong B, Sun J (2010) Competition between hydrogen bond and halogen bond in complexes of formaldehyde with hypohalous acids. Phys Chem Chem Phys 12:6837. https://doi.org/10.1039/b926355a

    Article  CAS  PubMed  Google Scholar 

  32. Wolf ME, Zhang B, Turney JM, Schaefer HF (2019) A comparison between hydrogen and halogen bonding: the hypohalous acid–water dimers, HOX⋯H 2O (X = F, Cl, Br). Phys Chem Chem Phys 21:6160–6170. https://doi.org/10.1039/C9CP00422J

    Article  CAS  PubMed  Google Scholar 

  33. Frisch MJ, Trucks GW, Schlegel HB et al (2009) Gaussian 09 (Revision A.02), Gaussian, Inc., Wallingford, CT

  34. Note on an approximation treatment for many-electron systems (1934) Møller, Chr., Plesset, M.S. Phys Rev 46:618–622. https://doi.org/10.1103/PhysRev.46.618

    Article  Google Scholar 

  35. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566. https://doi.org/10.1080/00268977000101561

  36. Bulat FA, Toro-Labbé A, Brinck T, Murray JS, Politzer P (2010) Quantitative analysis of molecular surfaces: areas, volumes, electrostatic potentials and average local ionization energies. J Mol Model 16:1679–1691. https://doi.org/10.1007/s00894-010-0692-x

    Article  CAS  PubMed  Google Scholar 

  37. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926. https://doi.org/10.1021/cr00088a005

    Article  CAS  Google Scholar 

  38. Keith TA (2011) “AIMAll (Version 11.08. 23).” TK Gristmill Software, Overland Park, KS, USA

  39. ADF2013, SCM, Theoretical chemistry; Vrije Universiteit: Amsterdam, The Netherlands. Available at https://www.scm.com

  40. Lu T (2014) "Multiwfn." Software manual. Version 3, no. 6

  41. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592. https://doi.org/10.1002/jcc.22885

    Article  CAS  PubMed  Google Scholar 

  42. Humphrey W, Dalke A, Schulten K (1996) VMD: Visual molecular dynamics. J Mol Graph 14:33–38. https://doi.org/10.1016/0263-7855(96)00018-5

    Article  CAS  PubMed  Google Scholar 

  43. Popelier PLA (1998) Characterization of a dihydrogen bond on the basis of the electron density. J Phys Chem A 102. https://doi.org/10.1021/jp9805048

  44. Lipkowski P, Grabowski SJ, Robinson TL, Leszczynski J (2004) Properties of the C-H⋯H dihydrogen bond: an ab initio and topological analysis. J Phys Chem A 108. https://doi.org/10.1021/jp048562i

  45. Lu YX, Zou JW, Wang YH, Jiang YJ, Yu Q (2007) Sen: Ab initio investigation of the complexes between bromobenzene and several electron donors: some insights into the magnitude and nature of halogen bonding interactions. J Phys Chem A 111. https://doi.org/10.1021/jp0740954

  46. Koch U, Popelier PLA (1995) Characterization of C-H-O hydrogen bonds on the basis of the charge density. J Phys Chem 99. https://doi.org/10.1021/j100024a016

  47. Wang C, Mo Y (2019) Classical electrostatic interaction is the origin for blue-shifting halogen bonds. Inorg Chem 58. https://doi.org/10.1021/acs.inorgchem.9b00875

  48. Inscoe B, Rathnayake H, Mo Y (2021) Role of charge transfer in halogen bonding. J Phys Chem A. 125. https://doi.org/10.1021/acs.jpca.1c01412

  49. Khodiev MK, Holikulov UA, ISSAOUI N, Al-Dossary OM, Bousiakoug LG, Lavrik NL (2023) Estimation of electrostatic and covalent contributions to the enthalpy of H-bond formation in H-complexes of 1,2,3-benzotriazole with proton-acceptor molecules by IR spectroscopy and DFT calculations. J King Saud Univ Sci 35. https://doi.org/10.1016/j.jksus.2022.102530

  50. Ahmad G, Rasool N, Qamar MU, Alam MM, Kosar N, Mahmood T, Imran M (2021) Facile synthesis of 4-aryl-N-(5-methyl-1H-pyrazol-3-yl)benzamides via Suzuki Miyaura reaction: antibacterial activity against clinically isolated NDM-1-positive bacteria and their docking studies. Arab J Chem 14. https://doi.org/10.1016/j.arabjc.2021.103270

  51. Khan P, Jamshaid M, Tabassum S, Perveen S, Mahmood T, Ayub K, Yang J, Gilani MA (2021) Exploring the interaction of ionic liquids with Al12N12 and Al12P12 nanocages for better electrode-electrolyte materials in super capacitors. J Mol Liq 344. https://doi.org/10.1016/j.molliq.2021.117828

  52. Bader RFW (1985) Atoms in molecules. Acc Chem Res 18:9–15. https://doi.org/10.1021/ar00109a003

    Article  CAS  Google Scholar 

  53. Singh H (2023) A DFT insight into structure, NBO, NCI, QTAIM, vibrational, and NLO properties of cationic amino acid ionic liquid [Pro-H] + BF4−. Struct Chem. https://doi.org/10.1007/s11224-023-02195-z

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Mohammadmehdi Moradkhani: Writing – original draft, Formal analysis, Software, Investigation, Methodology, Conceptualization, Writing – review & editing. Ali Naghipour: Validation, Supervision, Project administration. Yunes Abbasi Tyula: Writing – original draft, Investigation, Formal analysis, Methodology, Writing – review & editing.

Corresponding authors

Correspondence to Ali Naghipour or Yunes Abbasi Tyula.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 55.6 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moradkhani, M., Naghipour, A. & Tyula, Y.A. Investigation of structural, spectral, and electronic properties of complexes resulting from the interaction of acetonitrile and hypohalous acids. Struct Chem (2023). https://doi.org/10.1007/s11224-023-02243-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11224-023-02243-8

Keywords

Navigation