Skip to main content
Log in

Theoretical study of molecular interactions of sulfoximine with hypohalous acids HOF, HOCl, and HOBr

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The molecular interactions between sulfoximine (SOI) and hypohalous acids HOX molecules (X=F, Cl and Br) were investigated using the MP2 method at 6-311++G(2d,2p) basis set. Two different patterns including hydrogen bond (HB; H···N, H···O) and halogen bond (XB; N···X, O···X) interactions were found for complex formation between SOI and HOX molecules. In general stability of the hydrogen bond complexes are greater than other one. Quantum theories of atoms in molecules and natural bond orbitals methods have been applied to analyze the intermolecular interactions. Good correlations have been found between the interaction energies (SE), the second-order perturbation energies E(2), and the charge transfer qCT in the studied systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Scheiner S (1997) Hydrogen bonding: a theoretical perspective. Oxford University Press, New York

    Google Scholar 

  2. Scheiner S (1997) Molecular interactions: from van der Waals to strongly bound complexes. Wiley, England

    Google Scholar 

  3. Hadzi D (1997) Theoretical treatment of hydrogen bonding. Wiley, England

    Google Scholar 

  4. Metrangolo P, Resnati G (2008) Halogen bonding: fundamental and applications. Springer, Berlin

    Book  Google Scholar 

  5. Metrangolo P, Neukirch H, Pilati T, Resnati G (2005) Acc Chem Res 38:386–395

    Article  CAS  Google Scholar 

  6. Metrangolo P, Resnati G (2008) Science 321:918–919

    Article  CAS  Google Scholar 

  7. Metrangolo P, Meyer F, Pilati T, Resnati G, Terraneo G (2008) Angew Chem Int Ed 47:6114–6127

    Article  CAS  Google Scholar 

  8. Auffinger P, Hays FA, Westhof E, Ho PS (2004) Proc Natl Sci USA 101:16789–16794

    Article  CAS  Google Scholar 

  9. Aakeroy CB, Fasulo M, Schultheiss N, Desper J, Moor C (2007) J Am Chem Soc 129:13772–13773

    Article  Google Scholar 

  10. Lu YX, Zou JW, Wang HQ, Yu QS, Zhang HS, Jiang YJ (2007) J Phys Chem A 111:10781–10788

    Article  CAS  Google Scholar 

  11. Li QZ, Lin QQ, Li WZ, Chen JB, Sou JZ (2008) Chem Phys Chem 9:2265–2269

    CAS  Google Scholar 

  12. Alkorta I, Blanco F (2008) J Phys Chem A 112:10856–10863

    Article  CAS  Google Scholar 

  13. Zabardasti A, Kakanejadifard A, Ghasemian M (2012) Comput. Theor Chem 989:1–6

    Article  Google Scholar 

  14. Huang SL, Swern D (1976) Phosphorus Sulfur Relat Elem 1:309–314

    Article  CAS  Google Scholar 

  15. Kennewell PD, Taylor JB (1980) Chem Soc Rev 9:477–498

    Article  CAS  Google Scholar 

  16. Reggelin M, Zur C (2000) Synthesis 1:1–64

    Article  Google Scholar 

  17. Trost BM, Matsuoka RT (1992) Synlett 1:27–30

    Article  Google Scholar 

  18. Okamura H, Bolm C (2004) Chem Lett 33:482–487

    Article  CAS  Google Scholar 

  19. Okamura H, Bolm C (2004) Org Lett 6(8):1305–1307

    Article  CAS  Google Scholar 

  20. Hackenberger CPR, Raabe G, Bolm C (2004) Chem Eur J 10:2942–2952

    Article  CAS  Google Scholar 

  21. Frings M, Thomé I, Bolm C (2012) Beilstein J Org Chem 8:1443–1451

    Article  CAS  Google Scholar 

  22. Jeanguenat A (2006) Patent WO 2006/032462 A1, March 30, 2006

  23. Huang JX, Zhu Y, Rogers RB (2008) Patent US 2008/0108665 A1, May 8, 2008

  24. Yu H, Qin Z, Dai H, Zhang X (2008) J Agric Food Chem 56:11356–11360

    Article  CAS  Google Scholar 

  25. Jeschke P, Thielert W (2010) Patent WO 2010/022897 A2, March 4, 2010

  26. Kim CU, Luh BY, Misco PF (1991) Nucleosides Nucleotides 10:483–484

    Article  CAS  Google Scholar 

  27. Dolle RE, McNair D (1993) Tetrahedron Lett 34:133–136

    Article  CAS  Google Scholar 

  28. Kawanishi H, Morimoto H, Nakano T (1998) Heterocycles 49:169–189

    Article  CAS  Google Scholar 

  29. Jautelat R, Lücking U, Siemeister G (2010) Patent WO 046035 A1, April 29, 2010

  30. Chen XY, Park SJ, Buschmann H (2012) Bioorg Med Chem Lett 22:4307–4309

    Article  CAS  Google Scholar 

  31. Thomas E (1979) Infect Immun 23:522–531

    CAS  Google Scholar 

  32. Pattison D, Davies M (2001) J Chem Res Toxicol 14:1453–1464

    Article  CAS  Google Scholar 

  33. Pattison D, Hawkins C (2003) Chem Res Toxicol 16:439–449

    Article  CAS  Google Scholar 

  34. Solimannejad M, Alkorta I (2008) Chem Phys Lett 454:201–206

    Article  CAS  Google Scholar 

  35. Berski S, Lundell J, Latajka Z, Leszczynski J (1998) J Phys Chem A 102:10768–10776

    Article  CAS  Google Scholar 

  36. Berski B, Silvi Z, Latajka J, Leszczynski J (1999) J Chem Phys 111:2542–2555

    Article  CAS  Google Scholar 

  37. Bil A, Latajka Z (2004) Chem Phys 303:43–45

    Article  CAS  Google Scholar 

  38. Panek JJ, Berski S (2008) Chem Phys Lett 467:42–45

    Article  Google Scholar 

  39. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03. Gaussian Inc., Pittsburgh

    Google Scholar 

  40. Boys SF, Bernardi F (1970) Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  41. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  42. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  43. Kumar PS, Bharatam PV (2005) Tetrahedron 61:5633–5639

    Article  Google Scholar 

  44. Bharatam PV, Gupta A, Kaur A (2002) Tetrahedron 58:1759–1764

    Article  CAS  Google Scholar 

  45. Senning A (1972) Sulfur in organic and inorganic chemistry. Marcel Dekker, New York

    Google Scholar 

  46. Pyne SG, Dong A (1995) Tetrahedron Lett 36:3029–3030

    Article  CAS  Google Scholar 

  47. Pyne SG, Davis DH, Dong Z (1998) Tetrahedron Lett 39:8499–8502

    Article  CAS  Google Scholar 

  48. Harmata H, Glaser R, Chen GS (1995) Tetrahedron Lett 36:9145–9148

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abedin Zabardasti.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 87 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kakanejadifard, A., Japelaghi, S., Ghasemian, M. et al. Theoretical study of molecular interactions of sulfoximine with hypohalous acids HOF, HOCl, and HOBr. Struct Chem 26, 23–33 (2015). https://doi.org/10.1007/s11224-014-0461-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-014-0461-z

Keywords

Navigation