Skip to main content
Log in

1,3-Elimination of HBr from dimethyl (2S,4RS)-4-bromo-N-phthaloylglutamate under the action of bases: a theoretical study

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Stereospecific reactions of dimethyl (2S,4RS)-4-bromo-N-phthaloylglutamate with KOH, triethylamine, and piperidine affording dimethyl (Z)-1-phthalimidocyclopropane-1,2-dicarboxylate were studied in terms of the density functional theory. The two-stage E1cB mechanism of HBr elimination involving the formation of an intermediate carban-ion upon deprotonation at the C(2) atom was established by the nudged elastic band method. Calculations of the reactions with all bases, carried out with inclusion of the solvent effect using ethanol as the model solvent, demonstrated that the E1cB mechanism of 1,3-elimination of HBr is more preferable than the SN2 mechanism of nucleophilic substitution of bromine at the C(4) atom. Contrary to this, calculations of the reaction with piperidine using benzene as the model solvent revealed that the SN2 mechanism is slightly more preferable than the ElcB one. High stereoselectivity of the 1,3-elimination of bromine with respect to the (Z)-isomer is due to noncovalent repulsive interactions between the methoxycarbonyl groups in the transition state leading from the carbanion to the minor (E)-diastereomer of 1-phthalimidocyclopropane-1,2-dicarboxylic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.-Y. Fan, X.-H. Gao, J.-M. Yue, Sci. China Chem., 2016, 59, 1126; DOI: https://doi.org/10.1007/s11426-016-0233-1.

    Article  CAS  Google Scholar 

  2. P. Keglevich, A. Keglevich, L. Hazai, G. Kalaus, C. Szántay, Curr. Org. Chem., 2014, 18, 2037; DOI: https://doi.org/10.2174/1385272819666140721190257.

    Article  CAS  Google Scholar 

  3. The Drugbank, Chemical Structure Search (accessed December 12, 2022); https://go.drugbank.com/unearth/q&searcher=drug&query=cyclopropyl.

  4. A. Reichelt, S. F. Martin, Acc. Chem. Res., 2006, 39, 433; DOI: https://doi.org/10.1021/ar030255s.

    Article  CAS  PubMed  Google Scholar 

  5. F. Gnad, O. Reiser, Chem. Rev., 2003, 103, 1603; DOI: https://doi.org/10.1021/cr010015v.

    Article  CAS  PubMed  Google Scholar 

  6. F. Brackmann, A. de Meijere, Chem. Rev., 2007, 107, 4493; DOI: https://doi.org/10.1021/cr078376j.

    Article  CAS  PubMed  Google Scholar 

  7. J. Salaün, in Small Ring Compounds in Organic Synthesis VI, Topics in Current Chemistry, Ed. A. de Meij ere, 2000, 207, p. 1; DOI: https://doi.org/10.1007/3-540-48255-5_1.

  8. M. Ya. Mel’nikov, E. M. Budynina, O. A. Ivanova, I. V. Trushkov, Mendeleev Commun., 2011, 21, 293; DOI: https://doi.org/10.1016/j.mencom.2011.11.001.

    Article  Google Scholar 

  9. A. E. Vartanova, A. Yu. Plodukhin, M. A. Boichenko, V. V. Shorokhov, S. S. Zhokhov, I. V. Trushkov, O. A. Ivanova, Russ. Chem. Bull., 2022, 71, 2431; DOI: https://doi.org/10.1007/s11172-022-3671-3.

    Article  CAS  Google Scholar 

  10. V. P. Krasnov, M. A. Korolyova, G. L. Levit, Russ. Chem. Rev., 2003, 72, 343; DOI: https://doi.org/10.1070/RC2003v072n04ABEH000750.

    Article  CAS  Google Scholar 

  11. V. A. Smit, A. D. Dil’man, Osnovy sovremennogo or-ganicheskogo sinteza [Foundations of Modern Organic Synthesis], BINOM. Laboratoriya znaniy, Moscow, 2009, p. 447 (in Russian).

    Google Scholar 

  12. O. G. Kulinkovich, Cyclopropanes in Organic Synthesis, J. Wiley & Sons, Inc, Hoboken, New Jersey, 2015, p. 65.

    Book  Google Scholar 

  13. V. D. Gvozdev, K. N. Shavrin, M. P. Egorov, O. M. Nefedov, Russ. Chem. Bull., 2021, 70, 2051; DOI: https://doi.org/10.1007/s11172-021-3318-9.

    Article  CAS  Google Scholar 

  14. G. W. Cannon, R. C. Ellis, J. R. Leal, Org. Synth., 1951, 31, 74; DOI: https://doi.org/10.15227/orgsyn.031.0074.

    Article  CAS  Google Scholar 

  15. N. Vignola, B. List, J. Am. Chem. Soc., 2004, 126, 450; DOI: https://doi.org/10.1021/ja0392566.

    Article  CAS  PubMed  Google Scholar 

  16. T. Selvi, K. Srinivasan, J. Org. Chem., 2014, 79, 3653; DOI: https://doi.org/10.1021/jo402848v.

    Article  CAS  PubMed  Google Scholar 

  17. J. P. Phelan, S. B. Lang, J. S. Compton, C. B. Kelly, R. Dykstra, O. Gutierrez, G. A. Molander, J. Am. Chem. Soc., 2018, 140, 8037; DOI: https://doi.org/10.1021/jacs.8b05243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. H. Pellissier, A. Lattanzi, R. Dalpozzo, Asymmetric Synthesis of Three-Membered Rings, Wiley-VCH, Weinheim, Germany, 2017, p. 147.

    Book  Google Scholar 

  19. V. Kh. Kravtsov, V. N. Biyushkin, T. I. Malinovskii, V. P. Krasnov, T. V. Matveeva, Dokl. Chem., 1990, 311, 622.

    CAS  Google Scholar 

  20. V. P. Krasnov, M. A. Koroleva, T. V. Matveeva, E. A. Zhdanova, A. N. Grishakov, N. A. Kluev, Russ. Chem. Bull., 2001, 50, 644; DOI: https://doi.org/10.1023/A:1011356727378.

    Article  CAS  Google Scholar 

  21. V. P. Krasnov, A. Yu. Vigorov, I. A. Nizova, T. V. Matveeva, A. N. Grishakov, I. V. Bazhov, A. A. Tumashov, M. A. Ezhikova, M. I. Kodess, Eur. J. Org. Chem., 2007, 4257; DOI: https://doi.org/10.1002/ejoc.200700346.

  22. I. M. Bukrina, V. P. Krasnov, V. Kh. Kravtsov, V. N. Biyushkin, L. V. Alekseeva, Bull. Acad. Sci. USSR, Div. Chem. Sci., 1989, 38, 1910; DOI: https://doi.org/10.1007/bf00957790.

    Article  Google Scholar 

  23. V. P. Krasnov, I. M. Bukrina, E. A. Zhdanova, M. I. Kodess, M. A. Korolyova, Synthesis, 1994, 961; DOI: https://doi.org/10.1055/s-1994-25614.

  24. I. A. Nizova, V. P. Krasnov, O. V. Korotovskikh, L. V. Alekseeva, Bull. Acad. Sci. USSR, Div. Chem. Sci., 1989, 38, 2545; DOI: https://doi.org/10.1007/BF00962442.

    Article  Google Scholar 

  25. A. Yu. Vigorov, I. A. Nizova, G. L. Levit, T. V. Matveeva, L. Sh. Sadretdinova, O. I. Nazarov, N. S. Kovalev, D. A. Bakulin, D. V. Kurkin, I. N. Tyurekov, V. P. Krasnov, Russ. Chem. Bull., 2022, 71, 2636; DOI: https://doi.org/10.1007/s11172-022-3693-x.

    Article  CAS  Google Scholar 

  26. A. Yu. Vigorov, V. P. Krasnov, I. A. Nizova, L. Sh. Sadretdinova, G. L. Levit, T. V. Matveeva, P. A. Slepukhin, D. A. Bakulin, N. S. Kovalyov, I. N. Tyurenkov, V. N. Charushin, Dokl. Chem., 2020, 494, 131; DOI: https://doi.org/10.1134/S0012500820090049.

    Article  CAS  Google Scholar 

  27. A. Yu. Vigorov, I. A. Nizova, K. E. Shalunova, A. N. Grishakov, L. Sh. Sadretdinova, I. N. Ganebnykh, M. A. Ezhikova, M. I. Kodess, V. P. Krasnov, Russ. Chem. Bull., 2011, 60, 873; DOI: https://doi.org/10.1007/s11172-011-0137-4.

    Article  CAS  Google Scholar 

  28. V. P. Krasnov, I. A. Nizova, A. Yu. Vigorov, T. V. Matveeva, G. L. Levit, P. A. Slepukhin, M. A. Ezhikova, M. I. Kodess, Eur. J. Org. Chem., 2008, 1802; DOI: https://doi.org/10.1002/ejoc.200701154.

  29. V. P. Krasnov, M. A. Koroleva, Russ. Chem. Bull., 1995, 44, 631; DOI: https://doi.org/10.1007/BF00698492.

    Article  Google Scholar 

  30. M. A. Korolyova, A. Yu. Vigorov, V. P. Krasnov, Russ. Chem. Bull., 2022, 71, 1135; DOI: https://doi.org/10.1007/s11172-022-3513-3.

    Article  CAS  Google Scholar 

  31. E. N. Chulakov, M. A. Korolyova, L. Sh. Sadretdinova, A. A. Tumashov, M. I. Kodess, G. L. Levit, V. P. Krasnov, Russ. Chem. Bull., 2021, 70, 890; DOI: https://doi.org/10.1007/s11172-021-3164-9.

    Article  CAS  Google Scholar 

  32. M. A. Korolyova, S. A. Vakarov, D. N. Kozhevnikov, D. A. Gruzdev, G. L. Levit, V. P. Krasnov, Eur. J. Org. Chem., 2018, 33, 4577; DOI: https://doi.org/10.1002/ejoc.201800656.

    Article  Google Scholar 

  33. D. A. Gruzdev, S. A. Vakarov, M. A. Korolyova, E. V. Bartashevich, A. A. Tumashov, E. N. Chulakov, M. A. Ezhikova, M. I. Kodess, G. L. Levit, V. P. Krasnov, Org. Biomol. Chem., 2022, 20, 862; DOI: https://doi.org/10.1039/d1ob02099d.

    Article  CAS  PubMed  Google Scholar 

  34. A. D. Becke, J. Chem. Phys., 1993, 98, 1372; DOI: https://doi.org/10.1063/1.464304.

    Article  CAS  Google Scholar 

  35. A. D. Becke, J. Chem. Phys., 1993, 98, 5648; DOI: https://doi.org/10.1063/1.464913.

    Article  CAS  Google Scholar 

  36. F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297; DOI: https://doi.org/10.1039/B508541A.

    Article  CAS  PubMed  Google Scholar 

  37. V. Barone, M. Cossi, J. Phys. Chem. A, 1998, 102, 1995; DOI: https://doi.org/10.1021/JP9716997.

    Article  CAS  Google Scholar 

  38. S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem., 2011, 32, 1456; DOI: https://doi.org/10.1002/jcc.21759.

    Article  CAS  PubMed  Google Scholar 

  39. S. Grimme, A. Hansen, J. G. Brandenburg, C. Bannwarth, Chem. Rev., 2016, 116, 5105; DOI: https://doi.org/10.1021/acs.chemrev.5b00533.

    Article  CAS  PubMed  Google Scholar 

  40. H. Kruse, S. Grimme, J. Chem. Phys., 2012, 136, 154101; DOI: https://doi.org/10.1063/1.3700154.

    Article  PubMed  Google Scholar 

  41. F. Neese, J. Comput. Chem., 2003, 24, 1740; DOI: https://doi.org/10.1002/jcc.10318.

    Article  CAS  PubMed  Google Scholar 

  42. A. Pedretti, A. Mazzolari, S. Gervasoni, L. Fumagalli, G. Vistoli, Bioinformatics, 2021, 37, 1174; DOI: https://doi.org/10.1093/bioinformatics/btaa774.

    Article  CAS  PubMed  Google Scholar 

  43. J. Gasteiger, M. Marsili, Tetrahedron, 1980, 36, 3219; DOI: https://doi.org/10.1016/0040-4020(80)80168-2.

    Article  CAS  Google Scholar 

  44. F. Neese, F. Wennmohs, U. Becker, C. Riplinger, J. Chem. Phys., 2020, 152, 224108; DOI: https://doi.org/10.1063/5.0004608.

    Article  CAS  PubMed  Google Scholar 

  45. V. Asgeirsson, B. O. Birgisson, R. Bjornsson, U. Becker, F. Neese, C. Riplinger, H. Jónsson, J. Chem. Theory Comput., 2021, 17, 4929; DOI: https://doi.org/10.1021/acs.jctc.1c00462.

    Article  CAS  PubMed  Google Scholar 

  46. K. Ishida, K. Morokuma, A. Komornicki, J. Chem. Phys., 1977, 66, 2153; DOI: https://doi.org/10.1063/1.434152.

    Article  CAS  Google Scholar 

  47. S. Grimme, J. Chem. Phys., 2006, 124, 034108; DOI: https://doi.org/10.1063/1.2148954.

    Article  PubMed  Google Scholar 

  48. A. Fernández-Ramos, B. A. Ellingson, R. Meana-Paneda, J. M. C. Marques, D. G. Truhlar, Theor. Chem. Acc., 2007, 118, 813; DOI: https://doi.org/10.1007/s00214-007-0328-0.

    Article  Google Scholar 

  49. G. A. Zhurko, Chemcraft, graficheskaya programma dlya Windows dlya obrabotki kvantovo-khimicheskikh raschetov [Chemcraft — A Graphical Program for Windows to Work with Results of Quantum Chemical Calculations], Ivanovo, 2005 (in Russian).

  50. O. S. Tee, J. A. Altmann, K. Yates, J. Am. Chem. Soc., 1974, 96, 3141; DOI: https://doi.org/10.1021/ja00817a021.

    Article  CAS  Google Scholar 

  51. Y. Liu, T. S. Sorensen, F. Sun, Can. J. Chem., 1993, 71, 258; DOI: https://doi.org/10.1139/v93-037.

    Article  CAS  Google Scholar 

  52. F. G. Bordwell, B. B. Jarvis, J. Am. Chem. Soc., 1973, 95, 3585; DOI: https://doi.org/10.1021/ja00792a021.

    Article  CAS  Google Scholar 

  53. F. G. Bordwell, E. Doomes, J. Org. Chem., 1974, 39, 2531; DOI: https://doi.org/10.1021/jo00931a015.

    Article  CAS  Google Scholar 

  54. F. M. Bickelhaupt, MassSpectrom. Rev., 2001, 20, 347; DOI: https://doi.org/10.1002/mas.10007.

    CAS  Google Scholar 

  55. E. Mosconi, F. De Angelis, L. Belpassi, F. Tarantelli, S. Alunni, Eur. J. Org. Chem., 2009, 32, 5501; DOI: https://doi.org/10.1002/ejoc.200900906.

    Article  Google Scholar 

  56. D. K. Mandal, Stereochemistry and Organic Reactions: Conformation, Configuration, Stereoelectronic Effects and Asymmetric Synthesis, Elsevier—Academic Press— SPi Global, Kolkata, India, 2021, p. 223; DOI: https://doi.org/10.1016/C2020-0-01299-5.

    Google Scholar 

  57. D. E. Ortega, R. Ormazábal-Toledo, R. Contreras, R. A. Matute, Org. Biomol. Chem., 2019, 17, 9874; DOI: https://doi.org/10.1039/c9ob02004g.

    Article  CAS  PubMed  Google Scholar 

  58. Z. S. Jia, J. Rudzinski, P. Paneth, A. Thibblin, J. Org. Chem., 2002, 67, 177; DOI: https://doi.org/10.1021/jo0159340.

    Article  CAS  PubMed  Google Scholar 

  59. L. P. Wolters, Y. Ren, F. M. Bickelhaupt, ChemistryOpen, 2014, 3, 29; DOI: https://doi.org/10.1002/open.201300043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. J. K. Laerdahl, P. U. Civcir, L. Bache-Andreassen, E. Uggerud, Org. Biomol. Chem., 2006, 4, 135; DOI: https://doi.org/10.1039/b513315g.

    Article  CAS  PubMed  Google Scholar 

  61. M. Bortoli, L. P. Wolters, L. Orian, F. M. Bickelhaupt, J. Chem. Theory Comput., 2016, 12, 2752; DOI: https://doi.org/10.1021/acs.jctc.6b00253.

    Article  CAS  PubMed  Google Scholar 

  62. A. P. Bento, F. M. Bickelhaupt, J. Org. Chem., 2008, 73, 7290; DOI: https://doi.org/10.1021/jo801215z.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Korolyova.

Ethics declarations

The authors declare no competing interests.

Additional information

The authors express their gratitude to S. V. Scharf (N. N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences) for help in installing and debugging the ORCA software on the Uran supercomputer cluster.

This work was carried out within the State Assignment of the Ministry of Science and Higher Education of the Russian Federation (Reg. Nos AAAA-A19-119011790134-1 and AAAA-A19-119011790130-3).

No human or animal subjects were used in this research.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 72, No. 9, pp. 1991–2005, September, 2023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korolyova, M.A., Vigorov, A.Y. & Krasnov, V.P. 1,3-Elimination of HBr from dimethyl (2S,4RS)-4-bromo-N-phthaloylglutamate under the action of bases: a theoretical study. Russ Chem Bull 72, 1991–2005 (2023). https://doi.org/10.1007/s11172-023-3992-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-023-3992-x

Key words

Navigation