Skip to main content
Log in

Theoretical study of the stereoselectivity in the reaction of 4-haloglutamic acid derivatives with arylamines

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Diastereoselective nucleophilic substitution reaction of halogen in dimethyl (2S,4RS)-4-bromo- and 4-iodo-N-phthaloylglutamates with arylamines was studied within the framework of the electron density functional theory. According to calculations, the stereoselectivity of the substitution reaction with respect to (2S,4S)-isomers of 4-arylamino derivatives is determined not only by the steric hindrances in the transition state leading to minor (2S,4R)-diastereomers, but also by the stabilization of the corresponding initial reagents complex due to stacking interactions of the aromatic fragments of reagents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. K. Panday, Mini-Reviews in Organic Chemistry, 2020, 17, 626; DOI: https://doi.org/10.2174/1570193X16666190917142814.

    Article  CAS  Google Scholar 

  2. D. G. Piotrowska, I. E. Głowacka, A. E. Wróblewski, L. Lubowiecka, Beilstein J. Org. Chem., 2019, 15, 236; DOI: https://doi.org/10.3762/bjoc.15.22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. A. Limon, J. M. Reyes-Ruiz, R. G. Vaswani, A. R. Chamberlin, R. Miledi, ACS Chem. Neurosci., 2010, 1, 175; DOI: https://doi.org/10.1021/cn900037c.

    Article  CAS  PubMed  Google Scholar 

  4. T. Liang, X. Hou, Y. Zhou, X. Yang, H. Fang, ACS Med. Chem. Lett., 2019, 10, 1122; DOI: https://doi.org/10.1021/acsmedchemlett.9b00084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Z. Z. Brown, K. Akula, A. Arzumanyan, J. Alleva, M. Jackson, E. Bichenkov, J. B. Sheffield, M. A. Feitelson, C. E. Schafmeister, PLoS ONE, 2012, 7, e45948; DOI: https://doi.org/10.1371/journal.pone.0045948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. I. I. Baskin, V. A. Palyulin, Russ. Chem. Rev., 2009, 78, 495; DOI: https://doi.org/10.1070/RC2009v078n06ABEH004032.

    Article  CAS  Google Scholar 

  7. P. J. Flor, F. C. Acher, Biochem. Pharmacol., 2012, 84, 414; DOI: https://doi.org/10.1016/j.bcp.2012.04013.

    Article  CAS  PubMed  Google Scholar 

  8. M. Chiba, Y. Ishikawa, R. Sakai, M. Oikawa, ACS Comb. Sci., 2016, 18, 399; DOI: https://doi.org/10.1021/acscombsci.6b00046.

    Article  CAS  PubMed  Google Scholar 

  9. X. Rovira, A. Trapero, S. Pittolo, C. Zussy, A. Faucherre, C. Jopling, J. Giraldo, J.-P. Pin, P. Gorostiza, C. Goudet, A. Llebaria, Cell. Chem. Biol., 2016, 23, 929; DOI: https://doi.org/10.1016/j.chembiol.2016.06.013.

    Article  CAS  PubMed  Google Scholar 

  10. A. Yu. Vigorov, V. P. Krasnov, I. A. Nizova, L. Sh. Sadretdinova, G. L. Levit, T. V. Matveeva, P. A. Slepukhin, D. A. Bakulin, N. S. Kovalyov, I. N. Tyurenkov, V. N. Charushin, Dokl. Chem., 2020, 494, 131; DOI: https://doi.org/10.1134/S0012500820090049.

    Article  CAS  Google Scholar 

  11. V. P. Krasnov, L. V. Alekseeva, N. A. Firsova, I. K. Kodess, N. L. Burde, Pharm. Chem. J., 1984, 18, 369; DOI: https://doi.org/10.1007/bf00776786.

    Article  Google Scholar 

  12. I. A. Nizova, V. P. Krasnov, O. V. Korotovskikh, L. V. Alekseeva, Bull. Acad. Sci. USSR. Div. Chem. Sci., 1989, 38, 2545; DOI: https://doi.org/10.1007/BF00962442.

    Article  Google Scholar 

  13. V. P. Krasnov, A. Yu. Vigorov, I. A. Nizova, A. N. Grishakov, N. G. Evstigneeva, M. I. Kodess, Russ. Chem. Bull., 2004, 53, 1327; DOI: https://doi.org/10.1023/B:RUCB.0000042295.70355.47.

    Article  CAS  Google Scholar 

  14. V. P. Krasnov, I. M. Bukrina, M. A. Korolyova, V. Kh. Kravtsov, Russ. J. Org. Chem., 1998, 34, 333.

    CAS  Google Scholar 

  15. V. P. Krasnov, I. M. Bukrina, E. A. Zhdanova, M. I. Kodess, M. A. Korolyova, Synthesis, 1994, 961; DOI: https://doi.org/10.1055/s-1994-25614.

  16. I. M. Bukrina, V. P. Krasnov, V. Kh. Kravtsov, V. N. Biyushkin, L. V. Alekseeva, Bull. Acad. Sci. USSR. Div. Chem. Sci., 1989, 38, 1910; DOI: https://doi.org/10.1007/bf00957790.

    Article  Google Scholar 

  17. V. P. Krasnov, M. A. Koroleva, Russ. Chem. Bull., 1995, 44, 631; DOI: https://doi.org/10.1007/BF00698492.

    Article  Google Scholar 

  18. V. P. Krasnov, M. A. Koroleva, N. G. Evstigneeva, I. A. Nizova, Russ. Chem. Bull., 1995, 44, 635; DOI: https://doi.org/10.1007/BF00698493.

    Article  Google Scholar 

  19. V. P. Krasnov, M. A. Koroleva, G. L. Rusinov, Russ. Chem. Bull., 1996, 45, 543; DOI: https://doi.org/10.1007/BF01435778.

    Article  Google Scholar 

  20. A. Bartoszewicz, C. D. Matier, G. C. Fu, J. Am. Chem. Soc., 2019, 141, 14864; DOI: https://doi.org/10.1021/jacs.9b07875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. N. M. Rezayee, V. J. Enemærke, S. T. Linde, J. N. Lamhauge, G. J. Reyes-Rodríguez, K. A. Jørgensen, C. Lu, K. N. Houk, J. Am. Chem. Soc., 2021, 143, 7509; DOI: https://doi.org/10.1021/jacs.1c02193.

    Article  CAS  PubMed  Google Scholar 

  22. E. N. Chulakov, M. A. Korolyova, L. Sh. Sadretdinova, A. A. Tumashov, M. I. Kodess, G. L. Levit, V. P. Krasnov, Russ. Chem. Bull., 2021, 70, 890; DOI: https://doi.org/10.1007/s11172-021-3164-9.

    Article  CAS  Google Scholar 

  23. T. A. Hamlin, B. van Beek, L. P. Wolters, F. M. Bickelhaupt, Chem. Eur. J., 2018, 24, 5927; DOI: https://doi.org/10.1002/chem.201706075.

    Article  CAS  PubMed  Google Scholar 

  24. J. Xie, M. J. Scott, W. L. Hase, P. M. Hierl, A. A. Viggiano, Z. Phys. Chem., 2015, 229, 1747; DOI: https://doi.org/10.1515/zpch-2015-0663.

    Article  CAS  Google Scholar 

  25. M. A. Korolyova, S. A. Vakarov, D. N. Kozhevnikov, D. A. Gruzdev, G. L. Levit, V. P. Krasnov, Eur. J. Org. Chem., 2018, 33, 4577; DOI: https://doi.org/10.1002/ejoc.201800656.

    Article  CAS  Google Scholar 

  26. D. A. Gruzdev, S. A. Vakarov, M. A. Korolyova, E. V. Bartashevich, A. A. Tumashov, E. N. Chulakov, M. A. Ezhikova, M. I. Kodess, G. L. Levit, V. P. Krasnov, Org. Biomol. Chem., 2022, 20, 862; DOI: https://doi.org/10.1039/d1ob02099d.

    Article  CAS  PubMed  Google Scholar 

  27. S. Sinnecker, A. Rajendran, A. Klamt, M. Diedenhofen, F. Neese, J. Phys. Chem. A, 2006, 110, 2235; DOI: https://doi.org/10.1021/jp056016z.

    Article  CAS  PubMed  Google Scholar 

  28. A. D. Becke, J. Chem. Phys., 1993, 98, 1372; DOI: https://doi.org/10.1063/1.464304.

    Article  CAS  Google Scholar 

  29. A. D. Becke, J. Chem. Phys., 1993, 98, 5648; DOI: https://doi.org/10.1063/1.464913.

    Article  CAS  Google Scholar 

  30. F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297; DOI: https://doi.org/10.1039/B508541A.

    Article  CAS  PubMed  Google Scholar 

  31. S. Grimme, S. Ehrlich, L. Goerigk, J. Comp. Chem., 2011, 32, 1456; DOI: https://doi.org/10.1002/jcc.21759.

    Article  CAS  Google Scholar 

  32. S. Grimme, A. Hansen, J. G. Brandenburg, C. Bannwarth, Chem. Rev., 2016, 116, 5105; DOI: https://doi.org/10.1021/acs.chemrev.5b00533.

    Article  CAS  PubMed  Google Scholar 

  33. H. Kruse, S. Grimme, J. Chem. Phys., 2012, 136, 154101; DOI: https://doi.org/10.1063/1.3700154.

    Article  PubMed  CAS  Google Scholar 

  34. F. Neese, J. Comp. Chem., 2003, 24, 1740; DOI: https://doi.org/10.1002/jcc.10318.

    Article  CAS  Google Scholar 

  35. A. Pedretti, L. Villa, G. Vistoli, J. Comput.-Aided Mol. Des., 2004, 18, 167; DOI: https://doi.org/10.1023/b.jcam.0000035186.90683.f2.

    Article  CAS  PubMed  Google Scholar 

  36. A. Pedretti, L. Villa, G. Vistoli, J. Mol. Graph., 2002, 21, 47; DOI: https://doi.org/10.1016/s1093-3263(02)00123-7.

    Article  CAS  Google Scholar 

  37. J. Gasteiger, M. Marsili, Tetrahedron, 1980, 36, 3219; DOI: https://doi.org/10.1016/0040-4020(80)80168-2.

    Article  CAS  Google Scholar 

  38. F. Neese, WIREs Comput. Mol. Sci., 2012, 2, 73; DOI: https://doi.org/10.1002/wcms.81.

    Article  CAS  Google Scholar 

  39. A. Fernández-Ramos, B. A. Ellingson, R. Maena-Pañeda, J. M. C. Marques, D. G. Truhlar, Theor. Chem. Acc., 2007, 118, 813; DOI: https://doi.org/10.1007/s00214-007-0328-0.

    Article  CAS  Google Scholar 

  40. M. Dolg, in Modern Methods and Algorithms of Quantum Chemistry, Vol. 1, Ed. J. Grotendorst, John von Neumann Institute for Computing, Jülich, 2000, p. 507.

    Google Scholar 

  41. G. A. Zhurko, Chemcraft, graficheskaya programma dlya Windows dlya obrabotki kvantovo-khimicheskikh raschetov [Chemcraft, graphics program for Windows for processing quantum chemical calculations], Ivanovo, 2005 (in Russian).

  42. T. A. Hamlin, M. Swart, F. M. Bickelhaupt, Chem. Phys. Chem., 2018, 19, 1315; DOI: https://doi.org/10.1002/cphc.201701363.

    Article  CAS  PubMed  Google Scholar 

  43. V. P. Krasnov, M. A. Koroleva, T. V. Matveeva, E. A. Zhdanova, A. N. Grishakov, N. A. Klyuev, Russ. Chem. Bull., 2001, 50, 644; DOI: https://doi.org/10.1023/A:10113567227378.

    Article  CAS  Google Scholar 

  44. F. Ruff, Ö. Farkas, J. Phys. Org. Chem., 2011, 24, 480; DOI: https://doi.org/10.1002/poc.1790.

    Article  CAS  Google Scholar 

  45. M. S. Masoud, E. A. Khalil, S. A. El-T. A. E. Enein, H. M. Kamel, Eur. J. Chem., 2011, 2, 420; DOI: https://doi.org/10.5155/eurjchem.2.3.420-432.407.

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Foundation for Basic Research (Project No. 20-43-660045), as well as within the framework of the state assignment of the Ministry of Science and Higher Education of the Russian Federation (Theme No. AAAA-A19-119011790134-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Korolyova.

Additional information

No human or animal subjects were used in this research.

The authors declare no competing interests.

Based on the materials of the V International Conference “Modern synthetic methodologies for the design of drugs and functional materials” (November 8–12, 2021, Ekaterinburg, Russia).

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1135–1142, June, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korolyova, M.A., Vigorov, A.Y. & Krasnov, V.P. Theoretical study of the stereoselectivity in the reaction of 4-haloglutamic acid derivatives with arylamines. Russ Chem Bull 71, 1135–1142 (2022). https://doi.org/10.1007/s11172-022-3513-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3513-3

Key words

Navigation