Skip to main content
Log in

Kinetic resolution of racemic 6-substituted 1,2,3,4-tetrahydroquinaldines with chiral acyl chlorides. Experiment and quantum chemical simulation

  • Full Article
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

A comparative study of the kinetic resolution (KR) of racemic 6-substituted 2-methyl-1,2,3,4-tetrahydroquinolines with acyl chlorides of (S)-naproxen, N-phthaloyl-(S)-leucine, and (R)-O-phenyllactic acid was carried out. The selectivity factors in the KR of racemic amines with acyl chlorides of (S)-naproxen and (R)-O-phenyllactic acid were shown to be approximately the same and higher than those for the KR of N-phthaloyl-(S)-leucyl chloride. The reasons for the stereodifferentiation in the KR of racemic tetrahydroquinaldines containing groups of different electronic properties by acyl chlorides of three different chiral acids were explained using the DFT method. The conditions for stabilizing π—π interactions of aromatic fragments of the reagents, which do not occur in the same form in the transition state and lead to the minor diastereoisomeric product, are created in the transition state of the faster acylation reaction with (S)-naproxen and (R)-O-phenyllactic acyl chlorides. In the case of the KR of 2-methyl-1,2,3,4-tetrahydroquinoline and 2-methyl-6-methoxy-1,2,3,4-tetrahydroquinoline with N-phthaloyl-(S)-leucyl chloride, the acylation diastereoselectivity is determined, most likely, by conformational factors. The individual (S)-enantiomer of 2-methyl-6-methoxy-1,2,3,4-tetrahydroquinoline of high optical purity was synthesized using the KR of the racemate with (S)-naproxen acyl chloride.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. R. Maddani, J.-C. Fiaud, H. B. Kagan, in Separation of Enantiomers: Synthetic Methods, Ed. M. Todd, Wiley-VCH, Weinheim, 2014, p. 13.

  2. M. Breuer, K. Ditrich, T. Habicher, B. Hauer, M. Kebeler, R. Stürmer, T. Zelinski, Angew. Chem., Int. Ed., 2004, 43, 788; DOI: https://doi.org/10.1002/anie.200300599.

    Article  CAS  Google Scholar 

  3. C. E. Müller, P. R. Schreiner, Angew. Chem., Int. Ed., 2011, 50, 6012; DOI: https://doi.org/10.1002/anie.201006128.

    Article  Google Scholar 

  4. V. P. Krasnov, D. A. Gruzdev, G. L. Levit, Eur. J. Org. Chem., 2012, 1471; DOI: https://doi.org/10.1002/ejoc.201101489.

  5. G. L. Levit, D. A. Gruzdev, V. P. Krasnov, Adv. Org. Synth., 2018, 12, 151; DOI: https://doi.org/10.2174/9781681086804118120006.

    Article  Google Scholar 

  6. V. P. Krasnov, G. L. Levit, M. A. Korolyova, I. M. Bukrina, L. Sh. Sadretdinova, I. N. Andreeva, V. N. Charushin, O. N. Chupakhin, Russ. Chem. Bull., 2004, 53, 1253; DOI: https://doi.org/10.1023/B:RUCB.0000042282.29765.2f.

    Article  CAS  Google Scholar 

  7. D. A. Gruzdev, G. L. Levit, V. P. Krasnov, E. N. Chulakov, L. Sh. Sadretdinova, A. N. Grishakov, M. A. Ezhikova, M. I. Kodess, V. N. Charushin, Tetrahedron: Asymmetry, 2010, 21, 936; DOI: https://doi.org/10.1016/j.tetasy.2010.05.013.

    Article  CAS  Google Scholar 

  8. E. N. Chulakov, D. A. Gruzdev, G. L. Levit, L. Sh. Sadret-dinova, V. P. Krasnov, V. N. Charushin, Russ. Chem. Bull., 2011, 60, 948; DOI: https://doi.org/10.1007/s11172-011-0149-0.

    Article  CAS  Google Scholar 

  9. G. L. Levit, D. A. Gruzdev, V. P. Krasnov, E. N. Chulakov, L. Sh. Sadretdinova, M. A. Ezhikova, M. I. Kodess, V. N. Charushin, Tetrahedron: Asymmetry, 2011, 22, 185; DOI: https://doi.org/10.1016/j.tetasy.2010.12.017.

    Article  CAS  Google Scholar 

  10. D. A. Gruzdev, G. L. Levit, V. P. Krasnov, Tetrahedron: Asymmetry, 2012, 23, 1640; DOI: https://doi.org/10.1016/j.tetasy.2012.11.001.

    Article  CAS  Google Scholar 

  11. E. N. Chulakov, G. L. Levit, A. A. Tumashov, L. Sh. Sadret-dinova, V. P. Krasnov, Chem. Heterocycl. Compd., 2012, 48, 724; DOI: https://doi.org/10.1007/s10593-012-1051-x.

    Article  CAS  Google Scholar 

  12. D. A. Gruzdev, G. L. Levit, M. I. Kodess, V. P. Krasnov, Chem. Heterocycl. Compd., 2012, 48, 748; DOI: https://doi.org/10.1007/s10593-012-1053-8.

    Article  CAS  Google Scholar 

  13. D. A. Gruzdev, E. N. Chulakov, G. L. Levit, M. A. Ezhikova, M. I. Kodess, V. P. Krasnov, Tetrahedron: Asymmetry, 2013, 24, 1240; DOI: https://doi.org/10.1016/j.tetasy.2013.07.024.

    Article  CAS  Google Scholar 

  14. D. A. Gruzdev, S. A. Vakarov G. L. Levit, V. P. Krasnov, Chem. Heterocycl. Compd., 2014, 49, 1795; DOI: https://doi.org/10.1007/s10593-014-1432-4.

    Article  CAS  Google Scholar 

  15. S. A. Vakarov, D. A. Gruzdev, E. N. Chulakov, L. Sh. Sadretdinova, M. A. Ezhikova, M. I. Kodess, G. L. Levit, V. P. Krasnov, Chem. Heterocycl. Compd., 2014, 50, 838; DOI: https://doi.org/10.1007/s10593-014-1538-8.

    Article  CAS  Google Scholar 

  16. S. A. Vakarov, D. A. Gruzdev, E. N. Chulakov, L. Sh. Sadret-dinova, A. A. Tumashov, M. G. Pervova, M. A. Ezhikova, M. I. Kodess, G. L. Levit, V. P. Krasnov, V. N. Charushin, Tetrahedron: Asymmetry, 2016, 27, 1231; DOI: https://doi.org/10.1016/j.tetasy.2016.10.004.

    Article  CAS  Google Scholar 

  17. D. A. Gruzdev, E. N. Chulakov, L. Sh. Sadretdinova, G. L. Levit, V. P. Krasnov, V. N. Charushin, Dokl. Chem., 2018, 483, 293; DOI: https://doi.org/10.1134/S0012500818120017.

    Article  CAS  Google Scholar 

  18. S. A. Vakarov, D. A. Gruzdev, G. L. Levit, V. P. Krasnov, V. N. Charushin, O. N. Chupakhin, Russ. Chem. Rev., 2019, 88, 1063; DOI: https://doi.org/10.1070/RCR4893.

    Article  CAS  Google Scholar 

  19. Sh.-M. Lu, C. Bolm, Adv. Synth. Catal., 2008, 350, 1101; DOI: https://doi.org/10.1002/adsc.200800068.

    Article  CAS  Google Scholar 

  20. V. A. Potemkin, V. P. Krasnov, G. L. Levit, E. V. Bartoshevich, I. N. Andreeva, M. B. Kuzminsky, N. A. Anikin, V. N. Charushin, O. N. Chupakhin, Mendeleev Commun., 2004, 14, 69; DOI: https://doi.org/10.1070/MC2004v014n02ABEH001887.

    Article  Google Scholar 

  21. M. A. Korolyova, S. A. Vakarov, D. N. Kozhevnikov, D. A. Gruzdev, G. L. Levit, V. P. Krasnov, Eur. J. Org. Chem., 2018, 4577; DOI: https://doi.org/10.1002/ejoc.201800656.

  22. S. A. Vakarov, M. A. Korolyova, D. A. Gruzdev, M. G. Pervova, G. L. Levit, V. P. Krasnov, Russ. Chem. Bull., 2019, 68, 1257; DOI: https://doi.org/10.1007/s11172-019-2550-z.

    Article  CAS  Google Scholar 

  23. H. B. Bürgi, J. D. Dunitz, E. Shefter, J. Am. Chem. Soc., 1973, 95, 5065; DOI: https://doi.org/10.1021/ja00796a058.

    Article  Google Scholar 

  24. S. L. Cockroft, J. Perkins, C. Zonta, H. Adams, S. E. Spey, C. M. R. Low, J. G. Vinter, K. R. Lawson, C. J. Urch, C. A. Hunter, Org. Biomol. Chem., 2007, 5 1062; DOI: https://doi.org/10.1039/617576g.

    Article  CAS  Google Scholar 

  25. W. Wang, W. Zeng, Y. G. Zhou, Tetrahedron: Asymmetry, 2007, 18, 1103; DOI: https://doi.org/10.1016/j.tetasy.2007.04.028.

    Article  CAS  Google Scholar 

  26. A. Nose, T. Kudo, Chem. Pharm. Bull., 1984, 32, 2421; DOI: https://doi.org/10.1248/cpb.32.2421.

    Article  CAS  Google Scholar 

  27. M. A. Amin, M. A. Camerino, S. J. Mountford, X. Ma, D. T. Manallack, D. K. Chalmers, M. Wills, P. E. Thompson, Tetrahedron, 2019, 75, 130591; DOI: https://doi.org/10.1016/j.tet.2019.130591.

    Article  Google Scholar 

  28. A. Pedretti, L. Villa, G. Vistoli, J. Mol. Graph., 2002, 21, 47; DOI: https://doi.org/10.1016/S1093-3263(02)00123-7.

    Article  CAS  Google Scholar 

  29. A. Pedretti, L. Villa, G. Vistoli, J. Comput.-Aided Mol. Des., 2004, 18, 167; DOI: https://doi.org/10.1023/B:JCAM.0000035186.90683.f2.

    Article  CAS  Google Scholar 

  30. F. Neese, Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2012, 2, 73; DOI: https://doi.org/10.1002/wcms.81.

    CAS  Google Scholar 

  31. F. Neese, Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2017, 8, e1327; DOI: https://doi.org/10.1002/wcms.1327.

    Google Scholar 

  32. S. Grimme, J. Comput. Chem., 2006, 27, 1787; DOI: https://doi.org/10.1002/jcc.20495.

    Article  CAS  Google Scholar 

  33. S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys., 2010, 132, 154104; DOI: https://doi.org/10.1063/1.3382344.

    Article  Google Scholar 

  34. S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem., 2011, 32, 1456; DOI: https://doi.org/10.1002/jcc.21759.

    Article  CAS  Google Scholar 

  35. S. Grimme, A. Hansen, J. G. Brandenburg, C. Bannwarth, Chem. Rev., 2016, 116, 5105; DOI: https://doi.org/10.1021/acs.chemrev.5b00533.

    Article  CAS  Google Scholar 

  36. E. Caldeweyher, C. Bannwarth, S. Grimme, J. Chem. Phys. 2017, 147, 034112; DOI: https://doi.org/10.1063/1.4993215.

    Article  Google Scholar 

  37. S. Grimme, Chem. Eur. J., 2012, 18, 9955; DOI: https://doi.org/10.1002/chem.201200497.

    Article  CAS  Google Scholar 

  38. A. D. Becke, J. Chem. Phys., 1993, 98, 1372; DOI: https://doi.org/10.1063/1.464304.

    Article  CAS  Google Scholar 

  39. A. D. Becke, J. Chem. Phys., 1993, 98, 5648; DOI: https://doi.org/10.1063/1.464913.

    Article  CAS  Google Scholar 

  40. F. Weigend, R. Ahlichs, J. Phys. Chem. Chem. Phys., 2005, 7, 3297; DOI: https://doi.org/10.1039/B508541A.

    Article  CAS  Google Scholar 

  41. H. Kruse, S. Grimme, J. Chem. Phys., 2012, 126, 154101; DOI: https://doi.org/10.1063/1.3700154.

    Article  Google Scholar 

  42. A. Fernández-Ramos, B. A. Ellingson, R. Maena-Paneda, J. M. C. Marques, D. G. Truhlar, Theor. Chem. Acc., 2007, 118, 813; DOI: https://doi.org/10.1007/s00214-007-0328-0.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Krasnov.

Additional information

Dedicated to Academician of the Russian Academy of Sciences V. N. Charushin on the occasion of his 70th birthday.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 890–899, May, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chulakov, E.N., Korolyova, M.A., Sadretdinova, L.S. et al. Kinetic resolution of racemic 6-substituted 1,2,3,4-tetrahydroquinaldines with chiral acyl chlorides. Experiment and quantum chemical simulation. Russ Chem Bull 70, 890–899 (2021). https://doi.org/10.1007/s11172-021-3164-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-021-3164-9

Key words

Navigation