Skip to main content
Log in

Synthesis and pharmacological activity of a silicon—zinc—boron-containing glycerohydrogel

  • Full Article
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

A new pharmacologically active nanostructured silicon—zinc—boron-containing glycerohydrogel was synthesized by the sol—gel method using silicon, zinc, and boron glycerolates as biocompatible precursors. The hydrogel composition and structural features were investigated by transmission electron microscopy, powder X-ray diffraction, IR spectroscopy, atomic emission spectrometry, and elemental analysis; a structural model was proposed. It was found that the 3D framework of the gel is formed by the products of hydrolysis and subsequent (co)condensation of silicon- and boron-containing precursors. Meanwhile, the major part of zinc monoglycerolate does not undergo hydrolytic transformations during gelation, being present in the 3D framework cells as amorphous nano-sized particles. The dispersion medium of the gel is an aqueous glycerol solution of silicon and boron glycerolates, products of their hydrolytic transformations, and water-soluble products of hydrolytic transformations of zinc monoglycerolate. The silicon—zinc—boron gel is nontoxic and possesses wound-healing and antimicrobial activities; it can be considered as a nanostructured dispersed system promising for biomedical applications, which is prepared in a simple and cost-effective way without using catalysts or toxic organic solvents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Ikoba, H. Peng, H. Li, C. Miller, C. Yu. Q. Wang, Nanoscale, 2015, 7, 4291.

    Article  CAS  PubMed  Google Scholar 

  2. J. Jain, S. Arora, J. M. Rajwade, P. Omray, S. Khandelwal, K. M. Paknikar, Mol. Pharmaceutics, 2009, 6, 1388.

    Article  CAS  Google Scholar 

  3. M. Malmsten, Curr. Opin. Colloid Interface Sci., 2013, 18, 468.

    Article  CAS  Google Scholar 

  4. N. T. Pandya, P. Jani, J. Vanza, H. Tandel, Colloids Surf. B Biointerfaces, 2018, 165, 37.

    Article  CAS  PubMed  Google Scholar 

  5. H. Peng, X. Liu, G. Wang, M. Li, K. M. Bratlie, E. Cochran, Q. Wang, J. Mater. Chem. B, 2015, 3, 6856.

    Article  CAS  Google Scholar 

  6. S.-Y. Qin, Y.-J. Cheng, Z.-W. Jiang, Y.-H. Ma, A.-Q. Zhang, Colloids Surf. B Biointerfaces, 2018, 165, 345.

    Article  CAS  PubMed  Google Scholar 

  7. Y. Wang, Q. Zhao, N. Han, L. Bai, J. Li, J. Liu, E. Che, L. Hu, Q. Zhang, T. Jiang, S. Wang, Nanomedicine, 2015, 11, 313.

    Article  CAS  PubMed  Google Scholar 

  8. L. L. Hench, Sol-Gel Silica: Properties, Processing, and Technology Transfer, Noyes Publications, New Jersey, 1998, 177 pp.

    Google Scholar 

  9. S. Sakka, Handbook of Sol-Gel Science and Technology: Applications of Sol-Gel Technology, V. 3, Kluwer, Boston, 2005, 791 pp.

    Google Scholar 

  10. D. Levy, M. Zayat, The Sol-Gel Handbook. Vol. 1: Synthesis and Processing, Wiley-VCH Verlag, Weinheim, 2015, 1616 pp.

    Book  Google Scholar 

  11. N. A. Shabanova, P. D. Sarkisov, Sol—gel tekhnologii. Nano-dispersnyi kremnezem [Sol—gel Technology. Nanodispersed Silica], BINOM. Laboratoriya znanii, Moscow, 2012, 334 pp. (in Russian).

    Google Scholar 

  12. D. Brandhuber, V. Torma, C. Raab, H. Peterlik, A. Kulak, N. Hüsing, J. Mater. Chem., 2005, 17, 4262.

    Article  CAS  Google Scholar 

  13. M. A. Brook, Y. Chen, K. Guo, Z. Zhang, J. D. Brennan, J. Mater. Chem., 2004, 14, 1469.

    Article  CAS  Google Scholar 

  14. Yu. A. Shchipunov, T. Yu. Karpenko, A. V. Krekoten, I. V. Postnova, J. Colloid Interface Sci., 2005, 287, 373.

    Article  CAS  PubMed  Google Scholar 

  15. T. G. Khonina, E. V. Shadrina, A. A. Boyko, O. N. Chu-pakhin, L. P. Larionov, A. A. Volkov, V. D. Burda, Russ. Chem. Bull. (Int. Ed.), 2010, 59, 75.

    Article  CAS  Google Scholar 

  16. T. G. Khonina, A. P. Safronov, E. V. Shadrina, M. V. Ivanenko, A. I. Suvorova, O. N. Chupakhin, J. Colloid Interface Sci., 2012, 365, 81.

    Article  CAS  PubMed  Google Scholar 

  17. T. G. Khonina, A. P. Safronov, M. V. Ivanenko, E. V. Shadrina, O. N. Chupakhin, J. Mater. Chem. B, 2015, 3, 5490.aaaaa

    Article  CAS  Google Scholar 

  18. E. Yu. Larchenko, V. V. Permikin, A. P. Safronov, T. G. Khonina, Russ. Chem. Bull. (Int. Ed.), 2017, 66, 1478.

    Article  CAS  Google Scholar 

  19. M. V. Ivanenko, T. G. Khonina, O. N. Chupakhin, L. P. Larionov, R. R. Sakhautdinova, A. P. Safronov, Russ. Chem. Bull. (Int. Ed.), 2012, 61, 2163.

    Article  CAS  Google Scholar 

  20. O. N. Chupakhin, A. N. Bondarev, I. N. Shtan’ko, T. G. Khonina, E. V. Shadrina, E. A. Bogdanova, L. P. Larionov, Russ. Chem. Bull. (Int. Ed.), 2014, 63, 1219.

    Article  CAS  Google Scholar 

  21. T. G. Khonina, M. V. Ivanenko, O. N. Chupakhin, A. P. Safronov, E. A. Bogdanova, M. S. Karabanalov, V. V. Permikin, L. P. Larionov, L. I. Drozdova, Eur. J. Pharm. Sci., 2017, 107, 197.

    Article  CAS  PubMed  Google Scholar 

  22. O. N. Chupakhin, T. G. Khonina, N. V. Kungurov, N. V. Zilberberg, N. P. Evstigneeva, M. M. Kokhan, A. I. Polishchuk, E. V. Shadrina, E. Yu. Larchenko, L. P. Larionov, M. S. Karabanalov, Russ. Chem. Bull. (Int. Ed.), 2017, 66, 558.

    Article  CAS  Google Scholar 

  23. RF Pat. 2583945; Buyll. Izobret. (Invention Bull.), 2016, 13 (in Russian).

    Google Scholar 

  24. E. Yu. Larchenko, T. G. Khonina, E. V. Shadrina, A. V. Pestov, O. N. Chupakhin, N. V. Men’shutina, A. E. Lebedev, D. D. Lovskaya, L. P. Larionov, S. A. Chigvintsev, Russ. Chem. Bull. (Int. Ed.), 2014, 63, 1225.

    Article  CAS  Google Scholar 

  25. M. Y. Cheong, A. H. Hazimah, A. A. H. Zafarizal, I. Rosnah, J. Oil. Palm. Res., 2012, 24, 1287.

    Google Scholar 

  26. M. Y. Cheong, A. H. Hazimah, I. Rosnah, A. A. H. Zafarizal, J. Saudi Chem. Soc., 2017, 21, 643.

    Article  CAS  Google Scholar 

  27. C. Chiappe, F. Signori, G. Valentini, L. Marchetti, C. S. Pomelli, F. Bellina, J. Phys. Chem. B, 2010, 114, 5082.

    Article  CAS  PubMed  Google Scholar 

  28. V. I. Rakhimov, O. V. Rakhimova, M. P. Semov, Russ. J. Appl. Chem., 2010, 83, 214.

    Article  CAS  Google Scholar 

  29. Rukovodstvo po provedeniyu doklinicheskikh issledovanii lek-arstvennykh sredstv [Guidelines on the Preclinical Studies of Therapeutic Agents], Part 1, Ed. A. N. Mironov, Grif and K, Moscow, 2012, 944 pp. (in Russian).

    Google Scholar 

  30. M. Balouiri, M. Sadiki, S. K. Ibnsouda, J. Pharm. Anal., 2016, 6, 71.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. G. Khonina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khonina, T.G., Chupakhin, O.N., Kungurov, N.V. et al. Synthesis and pharmacological activity of a silicon—zinc—boron-containing glycerohydrogel. Russ Chem Bull 68, 1621–1628 (2019). https://doi.org/10.1007/s11172-019-2601-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-019-2601-5

Key words

Navigation