Skip to main content
Log in

Ligand substitution in chromium(III)-aqua complexes by l-histidine: kinetic resolution of two long-lived intermediates

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The kinetics of the reaction of substitution of aqua ligands in Cr(III) complexes by the amino acid l-histidine, in aqueous media and under acidic conditions (pH 3.60–5.79), has been studied with the aid of a spectrophotometric technique (at 530 nm). The rate-time profiles showed an initial acceleration period followed by a deceleration one. A model of three consecutive reactions has been applied, involving two long-lived intermediates (not reactive enough to be in steady state) and three rate constants: k1, k2 and k3, corresponding to the successive decays of the reactant, the first long-lived intermediate and the second, respectively. The three rate constants increased when the medium ionic strength was raised using KNO3 as background electrolyte, whereas the effect of KCl was of minor intensity, and showed base catalysis. The activation parameters for the reactions of Cr(III) with l-histidine, l-histidine methyl ester, l-arginine, l-lysine and 2-picolinic acid were also determined. The UV–Vis spectrum of the first long-lived intermediate was rather close to that of the inorganic reactant, whereas the spectrum of the second long-lived intermediate was somehow in between those corresponding to the inorganic reactant and the reaction product. The spectra of the final reactant mixtures revealed the co-existence of at least two complexes differing in the number of organic ligands, along with the corresponding protonated forms. The proposed mechanism involves the activation of the Cr(III) starting complex by deprotonation, as well as three rate-determining (slow) steps in which the breakage of a Cr(III)-aqua chemical bond takes place, thus leaving a vacant site to which the organic ligand can coordinate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Laidler KJ (1987) Chemical kinetics. Harper Collins, New York, pp 21–25

    Google Scholar 

  2. Levine IN (2002) Physical chemistry. McGraw-Hill, New York, pp 534–536

    Google Scholar 

  3. Atkins PW, de Paula J (2014) Physical chemistry. Oxford University Press, Oxford, pp 827–832

    Google Scholar 

  4. Hamm RE (1953) Complex ions of chromium. IV. The ethylenediaminetetraacetic acid complex with chromium(III). J Am Chem Soc 75:5670–5672

    Article  CAS  Google Scholar 

  5. Hedrick CE (1965) Formation of the chromium-EDTA complex. J Chem Educ 42:479–480

    Article  CAS  Google Scholar 

  6. Barreto JC, Brown D, Dubetz T, Kakareka J, Alberte RS (1965) A spectrophotometric determination of the energy of activation (E a) for a complexation reaction: the kinetics of formation of a Cr(III)/EDTA complex. Chem Educ 10:196–199

    Google Scholar 

  7. Abdel Messih MF, Abou-Gamra ZM (2012) Kinetics and mechanism of the reaction between chromium(III) and picolinic acid in weak acidic aqueous solution. Monatsh Chem 143:211–216

    Article  CAS  Google Scholar 

  8. Ramasami T, Taylor RS, Sykes AG (1976) Evidence for a dissociative mechanism in the reaction of glycine with [Cr(NH3)5(H20)]3+. Ionic strength contributions (as a 1:1 electrolyte) and ion-pairing (K IP) ability of the glycine zwitterion. Inorg Chem 15:2318–2320

    Article  CAS  Google Scholar 

  9. Khan IA, Kabir-ud-Din K (1981) Anation of hexaaquachromium(III) by glycine. J Inorg Nucl Chem 43:1082–1085

    Article  CAS  Google Scholar 

  10. Khan IA, Shadid M, Kabir-ud-Din K (1983) Kinetics of anation of hexaaquachromium(III) ion by serine in aqueous acidic medium. Indian J Chem A 22:382–385

    Google Scholar 

  11. Niogy BK, De GS (1983) Kinetics and mechanism of anation of hydroxopentaaquachromium(III) ion by DL-alanine in aqueous solution. Proc Indian Acad Sci Chem Sci 92:153–161

    Google Scholar 

  12. Khan IA, Kabir-ud-Din K (1984) Kinetics of anation of hexaaquachromium(III) ion by valine in aqueous acidic medium. Indian J Chem A 23:98–101

    Google Scholar 

  13. Niogy BK, De GS (1984) Kinetics and mechanism of anation of hydroxopentaaquachromium(III) ion by DL-phenylalanine in aqueous solution. J Indian Chem 61:389–392

    CAS  Google Scholar 

  14. Khan IA, Kabir-ud-Din K (1985) Studies on the composition and kinetics of chromium(III)-alanine system. Int J Chem Kinet 17:1263–1272

    Article  CAS  Google Scholar 

  15. Khan IA, Kabir-ud-Din K (1986) Kinetics of anation of hexaaquachromium(III) ion by aspartic acid—mechanism and activation parameters. Transit Met Chem 11:391–395

    Article  CAS  Google Scholar 

  16. Khan IA, Shahid M, Kabir-ud-Din K (1990) Kinetic and mechanistic studies on the complexation of aquachromium(III) with DL-tryptophan in aqueous acidic media. J Chem Soc Dalton Trans 10:3007–3012

    Google Scholar 

  17. Khan IA, Shahid M, Kabir-ud-Din K (1991) Methionine anation of aquachromium(III). Transit Met Chem 16:18–22

    Article  CAS  Google Scholar 

  18. Guindy NM, Abou-Gamra ZM, Abdel-Messih MF (1999) Kinetic studies on the complexation of aqua chromium(III) with DL-leucine in aqueous acidic media. J Chim Phys 96:851–864

    Article  CAS  Google Scholar 

  19. Guindy NM, Abou-Gamra ZM, Abdel-Messih MF (2000) Kinetic studies on the complexation of chromium(III) with some amino acids in aqueous acidic medium. Monatsh Chem 131:857–866

    Article  CAS  Google Scholar 

  20. Cerar J (2015) Reaction between chromium(III) and EDTA ions: an overlooked mechanism of case study reaction of chemical kinetics. Acta Chim Slov 62:538–545

    Article  CAS  PubMed  Google Scholar 

  21. Bakac A, Espenson JH (1993) Chromium complexes derived from molecular oxygen. Acc Chem Res 26:519–523

    Article  CAS  Google Scholar 

  22. Perez-Benito JF (2006) Effects of chromium(VI) and vanadium(V) on the lifespan of fish. J Trace Elem Med Biol 20:161–170

    Article  CAS  PubMed  Google Scholar 

  23. Pereira RFP, Tapia MJ, Valente AJM, Burrows HD (2012) Effect of metal ion hydration on the interaction between sodium carboxylates and aluminum(III) or chromium(III) ions in aqueous solution. Langmuir 28:168–177

    Article  CAS  PubMed  Google Scholar 

  24. Christiansen JA (1953) The elucidation of reaction mechanisms by the method of intermediates in quasi-stationary concentrations. In: Frankenburg WG (ed) Advances in catalysis and related subjects. Academic Press, New York, pp 311–353

    Google Scholar 

  25. Volk L, Richardson W, Lau KH, Hall M, Lin SH (1977) Steady state and equilibrium approximations in reaction kinetics. J Chem Educ 54:95–97

    Article  CAS  Google Scholar 

  26. Perez-Benito JF (2017) Some considerations on the fundamentals of chemical kinetics: steady state, quasi-equilibrium, and transition state theory. J Chem Educ 94:1238–1246

    Article  CAS  Google Scholar 

  27. Perez-Benito JF (2017) Two rate constant kinetic model for the chromium(III)-EDTA complexation reaction by numerical simulations. Int J Chem Kinet 49:234–249

    Article  CAS  Google Scholar 

  28. Perez-Benito JF, Nicolas-Rivases J (2018) Kinetics of the chromium(III)/l-glutamic acid complexation reaction: formation, decay, and UV-Vis spectrum of a long-lived intermediate. Int J Chem Kinet 50:591–603

    Article  CAS  Google Scholar 

  29. Perez-Benito JF, Martinez-Cereza G (2018) Ligand sequential replacement on chromium(III)-aqua complexes by l-alanine and other biological amino acids: a kinetic perspective. J Phys Chem A 122:7962–7973

    Article  CAS  PubMed  Google Scholar 

  30. Mertz W (1976) Chromium and its relation to carbohydrate metabolism. Med Clin N Am 60:739–744

    Article  CAS  PubMed  Google Scholar 

  31. Mertz W (1993) Chromium in human nutrition. A review. J Nutr 123:626–633

    CAS  PubMed  Google Scholar 

  32. Staniek H, Wojciak RW (2018) The combined effect of supplementary Cr(III) propionate complex and iron deficiency on the chromium and iron status in female rats. J Trace Elem Med Biol 45:142–149

    Article  CAS  PubMed  Google Scholar 

  33. Stearns DM (2000) Is chromium a trace essential metal? BioFactors 11:149–162

    Article  CAS  PubMed  Google Scholar 

  34. Vincent JB (2017) New evidence against chromium as an essential trace element. J Nutr 147:2212–2219

    Article  CAS  PubMed  Google Scholar 

  35. Chen Y, Watson HM, Gao JJ, Sinha SH, Cassady CJ, Vincent JB (2011) Characterization of the organic component of low molecular weight chromium binding substance and its binding of chromium. J Nutr 141:1225–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schwarz K, Mertz W (1959) Chromium(III) and the glucose tolerance factor. Arch Biochem Biophys 85:292–295

    Article  CAS  PubMed  Google Scholar 

  37. Berdicevsky I, Mirsky N (1994) Effects of insuline and glucose-tolerance factor (GTF) on growth of Saccharomyces cerevisiae. Mycoses 37:405–410

    Article  CAS  PubMed  Google Scholar 

  38. Weksler-Zangen S, Mizrahi T, Raz I (2012) Glucose tolerance factor extracted from yeast: oral insulin-mimetic and insulin-potentiating: in vivo and in vitro studies. Br J Nutr 108:875–882

    Article  CAS  PubMed  Google Scholar 

  39. Liu L, Cui WM, Zhang SW, Kong FH, Pedersen MA, Wen Y, Lv JP (2015) Effect of glucose tolerance factor (GTF) from high chromium yeast on glucose metabolism in insulin-resistant 3T3-L1 adipocytes. RSC Adv 5:3482–3490

    Article  CAS  Google Scholar 

  40. Vincent JB, Lukaski HC (2018) Chromium. Adv Nutr 9:505–506

    Article  PubMed  PubMed Central  Google Scholar 

  41. Vincent JB (2015) Is the pharmacological mode of action of chromium(III) as a second messenger? Biol Trace Elem Res 166:7–12

    Article  CAS  PubMed  Google Scholar 

  42. Kitadai N, Oonishi H, Umemoto K, Usui T, Fukushi K, Nakashima S (2017) Glycine polymerization on oxide minerals. Orig Life Evol Biosph 47:123–143

    Article  CAS  PubMed  Google Scholar 

  43. Remko M, Rode BM (2004) Catalyzed peptide bond formation in the gas phase. Role of bivalent cations and water in formation of 2-aminoacetamide from ammonia and glycine and in dimerization of glycine. Struct Chem 15:223–232

    Article  CAS  Google Scholar 

  44. Amir R, Galili G, Cohen H (2018) The metabolic roles of free amino acids during seed development. Plant Sci 275:11–18

    Article  CAS  PubMed  Google Scholar 

  45. Watford M, Wu G (2018) Protein. Adv Nutr 9:651–653

    Article  PubMed  PubMed Central  Google Scholar 

  46. Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    Article  CAS  PubMed  Google Scholar 

  47. Wu SL, Hu YJ, Zhang X, Sun YQ, Wu ZX, Li T, Lv JT, Li JL, Zhang J, Zheng LR, Huang LB, Chen BD (2018) Chromium detoxification in arbuscular mycorrhizal symbiosis mediated by sulfur uptake and metabolism. Environ Exp Bot 147:43–52

    Article  CAS  Google Scholar 

  48. Ma H, Li W, Zhou W, Liu J (2017) Site-selective labeling of chromium(III) as a quencher on DNA for molecular beacons. ChemPlusChem 82:1224–1230

    Article  CAS  Google Scholar 

  49. Chai J, Liu Y, Liu B, Yang B (2017) Effect of substituent groups (R = -CH3, -Br and -CF3) on the structure, stability and redox property of [Cr(R-pic)2(H2O)2]NO3·H2O complexes. J Mol Struct 1150:307–315

    Article  CAS  Google Scholar 

  50. Freeman F, Kappos JC (1985) Permanganate ion oxidations. 15. Additional evidence for formation of soluble (colloidal) manganese dioxide during the permanganate ion oxidation of carbon-carbon double bonds in phosphate-buffered solutions. J Am Chem Soc 107:6628–6633

    Article  CAS  Google Scholar 

  51. Freeman F, Chang LY (1986) Permanganate ion oxidations. 17. Kinetics and mechanism of the oxidation of (E)-3-(2-thyenyl)-2-propenoates and (E)-3-(3-thyenyl)-2-propenoates in phosphate-buffered solutions. J Am Chem Soc 108:4504–4509

    Article  CAS  Google Scholar 

  52. Perez-Benito JF, Arias C (1991) Occurrence of colloidal manganese dioxide in permanganate reactions. J Colloid Interface Sci 152:70–84

    Article  Google Scholar 

  53. Perez-Benito JF (2009) Autocatalytic reaction pathway on manganese dioxide colloidal particles in the permanganate oxidation of glycine. J Phys Chem C 113:15982–15991

    Article  CAS  Google Scholar 

  54. Wilkinson F (1980) Chemical kinetics and reaction mechanisms. Van Nostrand Reinhold, New York, pp 45–47

    Google Scholar 

  55. Engel T, Reid P (2010) Physical chemistry. Prentice Hall, New York, p 902

    Google Scholar 

  56. Espenson JH (1995) Chemical kinetics and reaction mechanisms. McGraw-Hill, New York, pp 113–115

    Google Scholar 

  57. Ni K, Kozak CM (2018) Kinetic studies of copolymerization of cyclohexene oxide with CO2 by a diamino-bis(phenolate) chromium(III) complex. Inorg Chem 57:3097–3106

    Article  CAS  PubMed  Google Scholar 

  58. Ni K, Panjez-Grave V, Kozak CM (2018) Effect of azide and chloride binding to diamino-bis(phenolate) chromium complexes on CO2/cyclohexene oxide copolymerization. Organometallics 37:2507–2518

    Article  CAS  Google Scholar 

  59. Binter A, Goodisman J, Dabrowiak JC (2006) Formation of monofunctional cisplatin-DNA adducts in carbonate buffer. J Inorg Biochem 100:1219–1224

    Article  CAS  PubMed  Google Scholar 

  60. Linert W, Jameson RF (1989) The isokinetic relationship. Chem Soc Rev 18:477–505

    Article  CAS  Google Scholar 

  61. Lei L, Guo QX (2001) Isokinetic relationship, isoequilibrium relationship, and enthalpy-entropy compensation. Chem Rev 101:673–695

    Article  CAS  Google Scholar 

  62. Yelon A, Movaghar B, Crandall RS (2006) Multi-excitation entropy: its role in thermodynamics and kinetics. Rep Prog Phys 69:1145–1194

    Article  CAS  Google Scholar 

  63. Barrie PJ (2012) The mathematical origins of the kinetic compensation effect: 1. The effect of random experimental errors. Phys Chem Chem Phys 14:318–326

    Article  CAS  PubMed  Google Scholar 

  64. Barrie PJ (2012) The mathematical origins of the kinetic compensation effect: 2. The effect of systematic errors. Phys Chem Chem Phys 14:327–336

    Article  CAS  PubMed  Google Scholar 

  65. Perez-Benito JF (2013) Some tentative explanations for the enthalpy-entropy compensation effect in chemical kinetics: from experimental errors to the Hinshelwood-like model. Monatsh Chem 144:49–58

    Article  CAS  Google Scholar 

  66. Perez-Benito JF, Mulero-Raichs M (2016) Enthalpy-entropy compensation effect in chemical kinetics and experimental errors: a numerical simulation approach. J Phys Chem A 120:7598–7609

    Article  CAS  PubMed  Google Scholar 

  67. Shpanko IV, Sadovaya IV (2018) Enthalpy-entropy compensation effect and other aspects of isoparametricity in reactions between trans-2,3-bis(3-bromo-5-nitrophenyl)oxirane and arenesulfonic acids. React Kinet Mech Catal 123:473–484

    Article  CAS  Google Scholar 

  68. McBane GC (1998) Chemistry from telephone numbers: the false isokinetic relationship. J Chem Educ 75:919–922

    Article  CAS  Google Scholar 

  69. Salmasi Z, Shier WT, Hashemi M, Mandipour E, Parhiz H, Abnous K, Ramezani M (2015) Heterocyclic amine-modified polyethylenimine as gene carriers for transfection of mammalian cells. Eur J Pharm Biopharm 96:76–88

    Article  CAS  PubMed  Google Scholar 

  70. Porter TL, Eastman MP, Bain E, Begay S (2001) Analysis of peptides synthesized in the presence of SAz-1 montmorillonite and Cu2+ exchanged hectorite. Biophys Chem 91:115–124

    Article  CAS  PubMed  Google Scholar 

  71. Griffith EC, Vaida V (2012) In situ observation of peptide bond formation at the water–air interface. Proc Natl Acad Sci USA 109:15697–15701

    Article  PubMed  Google Scholar 

  72. Rai D, Sass BM, Moore DA (1987) Chromium(III) hydrolysis constant and solubility of chromium(III) hydroxide. Inorg Chem 26:345–349

    Article  CAS  Google Scholar 

  73. Lopez-Gonzalez H, Peralta-Videa JR, Romero-Guzman ET, Rojas-Hernandez A, Gardea-Torresdey JL (2010) Determination of the hydrolysis constants and solubility product of chromium(III) from reduction of dichromate solutions by ICP-OES and UV-visible spectroscopy. J Solut Chem 39:522–532

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joaquin F. Perez-Benito.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1220 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perez-Benito, J.F., Julian-Millan, X. Ligand substitution in chromium(III)-aqua complexes by l-histidine: kinetic resolution of two long-lived intermediates. Reac Kinet Mech Cat 128, 1–22 (2019). https://doi.org/10.1007/s11144-019-01637-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-019-01637-2

Keywords

Navigation