Skip to main content
Log in

Kinetics of anation of hexaaquachromium(III) Ion by aspartic acid: mechanism and activation parameters

  • Full Papers
  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Summary

The kinetics of the reaction of hexaaquachromium(III) ion with aspartic acid in aqueous-acidic medium have been investigated spectrophotometrically at [H+]=1×10−4 – 10× 10−4mol dm−3, t=35–45 °C and μ=1.0 mol dm−3 (KNO3). The results are in accord with a mechanism involving a fast 1∶1 outer-sphere association between hexaaquachromium(III) ion and the substrate species, followed by their transformation into the product by the process where the incoming ligand is appreciably bounded to the metal ion in the transition state. The rate law consistant with the mechanism is as follows:

$$\begin{gathered} k_{obs} = \frac{{\left( {k_1 K_{IP} K_2 + k_2 K'_{IP} \left[ {H^ + } \right]} \right)\left[ A \right]_T }}{{\left( {{{\left[ {H^ + } \right]^2 } \mathord{\left/ {\vphantom {{\left[ {H^ + } \right]^2 } {K_1 }}} \right. \kern-\nulldelimiterspace} {K_1 }}} \right) + \left[ {H^ + } \right] + K_2 + \left( {K_{IP} K_2 + K'_{IP} \left[ {H^ + } \right]} \right)\left[ A \right]_T }} \hfill \\ A = Aspartic acid \hfill \\ \end{gathered} $$

The rate parameters were evaluated and associated activation parameters calculated using the Eyring equation. Enthalpy and entropy terms for the rate constants:viz. ΔH(k1)=+81±1 kJ mol−1, ΔH(k2)=+50±1 and ΔS(k1)=−54±3 JK−1 mol−1, ΔS(k2)=−157±2 JK−1 mol−1 are indicative of an (Ia) mechanism. Comparison of the results with published data on this metal ion also provide evidence of an associative interchange mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. W. Swaddle,Coord. Chem. Rev., 38, 217 (1974) and the refs. contained therein.

    Google Scholar 

  2. M. Kimura and J. Shirai,J. Inorg. Nucl. Chem., 40, 1085 (1978).

    Google Scholar 

  3. S. C. Tyagi and A. A. Khan,Indian J. Chem., 19A, 657 (1978).

    Google Scholar 

  4. S. C. Tyagi and A. A. Khan,J. Inorg. Nucl. Chem., 40, 1899 (1978).

    Google Scholar 

  5. I. A. Khan and Kabir-ud-Din,J. Inorg. Nucl. Chem., 43, 1082 (1981).

    Google Scholar 

  6. I. A. Khan, M. Shahid and Kabir-ud-Din,Indian J. Chem., 22A, 382 (1983).

    Google Scholar 

  7. I. A. Khan and Kabir-ud-Din,Indian J. Chem., 23A, 98 (1984).

    Google Scholar 

  8. I. A. Khan and Kabir-ud-Din,Int. J. Chem. Kin., 17, 1263 (1985).

    Google Scholar 

  9. W. Mertz,Science, 213, 1332 (1981); W. Mertz, E. W. Toepfer, E. E. Roginsky and M. M. Polansky,Fed. Proc., 33, 2275 (1974); W. Mertz,Physiol. Rev., 49, 163 (1969).

    Google Scholar 

  10. E.W. Toepfer, W. Mertz, M. M. Polansky, E. E. Roginsky and W. R. Wolf,J. Agric. Food Chem., 25, 162 (1977).

    Google Scholar 

  11. T. Ramasami, R. S. Taylor and A. G. Sykes,Inorg. Chem., 15, 2318 (1976).

    Google Scholar 

  12. D. Banerjea and S. Duttachaudhuri,J. Inorg. Nucl. Chem., 30, 871 (1968).

    Google Scholar 

  13. B. K. Niogy and G. S. De,J. Indian Chem. Soc., 61, 389 (1984).

    Google Scholar 

  14. B. K. Niogy and G. S. De,Proc. Indian Acad. Sci, (Chem. Sci.), 92A, 153 (1983).

    Google Scholar 

  15. A. A. Khan and W. U. Malik,Curr. Sci. (India), 29, 135 (1960).

    Google Scholar 

  16. Lassocinska,Rocz. Chem., 47, 889 (1973).

    Google Scholar 

  17. R. H. Mahler and H. C. Eugen,Biological Chemistry, 2nd. Edit., Harper and Row Publishers, New York, 1971.

    Google Scholar 

  18. R. E. Hamm and R. E. Davis,J. Am. Chem. Soc., 75, 2083 (1953).

    Google Scholar 

  19. R. E. Hamm and R. H. Perkins,J. Am. Chem. Soc., 77, 2083 (1955).

    Google Scholar 

  20. R. E. Hamm, R. L. Johnson, R. H. Perkins and R. E. Davis,J. Am. Chem. Soc., 80, 4469 (1958).

    Google Scholar 

  21. D. Banerjea and S. Dutta Chaudhuri,J. Inorg. Nucl. Chem., 32, 1617 (1970).

    Google Scholar 

  22. J. H. Espenson,Inorg. Chem., 8, 1554 (1969).

    Google Scholar 

  23. D. Thusius,Inorg. Chem., 10, 1106 (1971).

    Google Scholar 

  24. R. D. Shannon and C. R. Prewit,Acta Crystallogr. Sec. B, 25, 925 (1969).

    Google Scholar 

  25. R. G. Wilkins,The Study of Kinetics and Mechanism of Reactions of Transition Metal Complexes, Allyn and Bacon Boston, 1974, pp. 194.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, I.A., Kabir-ud-Din Kinetics of anation of hexaaquachromium(III) Ion by aspartic acid: mechanism and activation parameters. Transition Met Chem 11, 391–395 (1986). https://doi.org/10.1007/BF01225990

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01225990

Keywords

Navigation