Skip to main content
Log in

Deterministic hierarchical joint remote state preparation via a non-maximally entangled state

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The study of hierarchical quantum communication is of great importance in resolving practical scenarios involving multiple agents with varying permissions to access information. Inspired by the work (Shukla et al. Quantum Inf Process 16(8):1–32, 2017), we reinvestigated probabilistic hierarchical protocols and presented an alternative deterministic hierarchical joint remote state preparation scheme via a non-maximally entangled channel, in which the successful probability of remote state preparation reaches 1 with appropriate operations or measurements. And this scheme is also applicable to many different quantum communication scenarios. For example, we described a scenario where senders are unknown to information. In this scenario, the information can also be deterministically transferred to recipients by our program. This protocol solves the problem of inefficient communication due to entanglement degradation and contributes to realizing practical quantum communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423 (1948)

    Article  MathSciNet  Google Scholar 

  2. Benioff, P.: The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines. J. Stat. Phys. 22, 563–591 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  3. Lloyd, S.: Almost any quantum logic gate is universal. Phys. Rev. Lett. 75, 346–349 (1995)

    Article  ADS  Google Scholar 

  4. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Theor. Comput. Sci. 560, 7–11 (2014)

    Article  MathSciNet  Google Scholar 

  5. Xu, H., Song, X.-K., Wang, D., Ye, L.: Quantum sensing of control errors in three-level systems by coherent control techniques. Sci. China Phys. Mech. Astron. 66(4), 240314 (2023)

    Article  ADS  Google Scholar 

  6. Deutsch, D.: Quantum theory, the Church–Turing principle and the universal quantum computer. Proc. R. Soc. Lond. A 400(1818), 97–117 (1985)

  7. Deutsch, D.E.: Quantum computational networks. Proc. R. Soc. Lond. A 425(1868), 73–90 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  8. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings 35th Annual Symposium on Foundations of Computer Science, pp. 124–134 (1994)

  9. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  10. Duan, L.-M., Lukin, M.D., Cirac, J.I., Zoller, P.: Long-distance quantum communication with atomic ensembles and linear optics. Nature 414(6862), 413–418 (2001)

    Article  ADS  Google Scholar 

  11. Gisin, N., Thew, R.: Quantum communication. Nat. Photonics 1(3), 165–171 (2007)

    Article  ADS  Google Scholar 

  12. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  13. Shor, P.W., Preskill, J.: Simple proof of security of the bb84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441–444 (2000)

    Article  ADS  Google Scholar 

  14. Kwek, L.-C., Cao, L., Luo, W., Wang, Y., Sun, S., Wang, X., Liu, A.Q.: Chip-based quantum key distribution. AAPPS Bull. 31(1), 15 (2021)

    Article  ADS  Google Scholar 

  15. Liu, B., Xia, S., Xiao, D., Huang, W., Xu, B., Li, Y.: Decoy-state method for quantum-key-distribution-based quantum private query. Sci. China Phys. Mech. Astron. 65(4), 66 (2022)

    Article  Google Scholar 

  16. Li, Z., Wei, K.: Improving parameter optimization in decoy-state quantum key distribution. Quantum Eng. 2022, 9717591 (2022)

    Article  Google Scholar 

  17. Sheng, Y.-B., Zhou, L.: Accessible technology enables practical quantum secret sharing. Sci. China Phys. Mech. Astron. 66(6), 260331 (2023)

    Article  ADS  Google Scholar 

  18. Shenoy-Hejamadi, A., Pathak, A., Radhakrishna, S.: Quantum cryptography: key distribution and beyond. Quanta 6(1), 1–47 (2017)

    Article  MathSciNet  Google Scholar 

  19. Chen, M.-F., Zhou, P., Lan, Q., Lu, X.-Q.: Hyper-parallel nonlocal cnot operation assisted by quantum-dot spin in a double-sided optical microcavity. J. Opt. Soc. Am. B 40(12), 3291–3300 (2023)

    Article  ADS  Google Scholar 

  20. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  21. Mattle, K., Weinfurter, H., Kwiat, P.G., Zeilinger, A.: Dense coding in experimental quantum communication. Phys. Rev. Lett. 76, 4656–4659 (1996)

    Article  ADS  Google Scholar 

  22. Bruß, D., D’Ariano, G.M., Lewenstein, M., Macchiavello, C., Sen, A., Sen, U.: Distributed quantum dense coding. Phys. Rev. Lett. 93, 210–501 (2004)

  23. Guo, Y., Liu, B.-H., Li, C.-F., Guo, G.-C.: Advances in quantum dense coding. Adv. Quantum Technol. 2(5–6), 1900011 (2019)

    Article  Google Scholar 

  24. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  25. Karlsson, A., Bourennane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58, 4394–4400 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  26. Stenholm, S., Bardroff, P.J.: Teleportation of n-dimensional states. Phys. Rev. A 58, 4373–4376 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  27. Sisodia, M., Shukla, A., Thapliyal, K., Pathak, A.: Design and experimental realization of an optimal scheme for teleportation of an n-qubit quantum state. Quantum Inf. Process. 16, 1–19 (2017)

    Article  MathSciNet  Google Scholar 

  28. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  29. Deng, F.-G., Long, G.L., Liu, X.-S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  30. Deng, F.-G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)

    Article  ADS  Google Scholar 

  31. Banerjee, A., Pathak, A.: Maximally efficient protocols for direct secure quantum communication. Phys. Lett. A 376(45), 2944–2950 (2012)

    Article  ADS  Google Scholar 

  32. Zhang, W., Ding, D.-S., Sheng, Y.-B., Zhou, L., Shi, B.-S., Guo, G.-C.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118, 220501 (2017)

    Article  ADS  Google Scholar 

  33. Liu, X., Luo, D., Lin, G., Chen, Z., Huang, C., Li, S., Zhang, C., Zhang, Z., Wei, K.: Fiber-based quantum secure direct communication without active polarization compensation. Sci. China Phys. Mech. Astron. 65(12), 120311 (2022)

    Article  ADS  Google Scholar 

  34. Zhou, L., Xu, B.-W., Zhong, W., Sheng, Y.-B.: Device-independent quantum secure direct communication with single-photon sources. Phys. Rev. Appl. 19, 014036 (2023)

    Article  ADS  Google Scholar 

  35. Zeng, H., Du, M.-M., Zhong, W., Zhou, L., Sheng, Y.-B.: High-capacity device-independent quantum secure direct communication based on hyper-encoding. Fundamental Research (2023)

  36. Lo, H.-K.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity. Phys. Rev. A 62, 012313 (2000)

    Article  ADS  Google Scholar 

  37. Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63, 014302 (2000)

    Article  ADS  Google Scholar 

  38. Bennett, C.H., DiVincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Remote state preparation. Phys. Rev. Lett. 87, 077902 (2001)

    Article  ADS  Google Scholar 

  39. Nguyen, B.A., Cao, T.B., Nung, V.D., Kim, J.: Remote state preparation with unit success probability. Adv. Nat. Sci. 2(3), 035009 (2011)

    Google Scholar 

  40. Dakić, B., Lipp, Y.O., Ma, X., Ringbauer, M., Kropatschek, S., Barz, S., Paterek, T., Vedral, V., Zeilinger, A., Brukner, Č, Walther, P.: Quantum discord as resource for remote state preparation. Nat. Phys. 8(9), 666–670 (2012)

    Article  Google Scholar 

  41. Sharma, V., Shukla, C., Banerjee, S., Pathak, A.: Controlled bidirectional remote state preparation in noisy environment: a generalized view. Quantum Inf. Process. 14, 3441–3464 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  42. Li, X., Ghose, S.: Optimal joint remote state preparation of equatorial states. Quantum Inf. Process. 14(12), 4585–4592 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  43. Nguyen, B.A., Kim, J.: Joint remote state preparation. J. Phys. B: At. Mol. Opt. Phys. 41(9), 095501 (2008)

    Article  ADS  Google Scholar 

  44. Peng, J.-Y., Luo, M.-X., Mo, Z.-W.: Joint remote state preparation of arbitrary two-particle states via ghz-type states. Quantum Inf. Process. 12, 2325–2342 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  45. An, N.B., Dat, L.T., Kim, J.: Nonstandard protocols for joint remote preparation of a general quantum state and hybrid entanglement of any dimension. Phys. Rev. A 98, 042329 (2018)

    Article  ADS  Google Scholar 

  46. Du, Z., Li, X.: Deterministic joint remote state preparation of four-qubit cluster type with tripartite involvement. Quantum Inf. Process. 19(1), 39 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  47. Gottesman, D.: Theory of quantum secret sharing. Phys. Rev. A 61, 042311 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  48. Wang, X.-W., Xia, L.-X., Wang, Z.-Y., Zhang, D.-Y.: Hierarchical quantum-information splitting. Opt. Commun. 283(6), 1196–1199 (2010)

    Article  ADS  Google Scholar 

  49. Shukla, C., Pathak, A.: Hierarchical quantum communication. Phys. Lett. A 377(19), 1337–1344 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  50. Wang, X.-W., Zhang, D.-Y., Tang, S.-Q., Xie, L.-J.: Multiparty hierarchical quantum-information splitting. J. Phys. B: At. Mol. Opt. Phys. 44(3), 035505 (2011)

    Article  ADS  Google Scholar 

  51. Bich, C.T., An, N.B.: Hierarchically controlling quantum teleportations. Quantum Inf. Process. 18, 1–14 (2019)

    Article  MathSciNet  Google Scholar 

  52. Ma, S., Wang, N.: Hierarchical remote preparation of an arbitrary two-qubit state with multiparty. Quantum Inf. Process. 20(8), 276 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  53. Shukla, C., Thapliyal, K., Pathak, A.: Hierarchical joint remote state preparation in noisy environment. Quantum Inf. Process. 16(8), 1–32 (2017)

    Article  MathSciNet  Google Scholar 

  54. Chen, N., Yan, B., Chen, G., Zhang, M.-J., Pei, C.-X.: Deterministic hierarchical joint remote state preparation with six-particle partially entangled state. Chin. Phys. B 27(9), 090304 (2018)

    Article  ADS  Google Scholar 

  55. Jing, R.-H., Huang, Y.-B., Bi, A.-A., Luo, W.-W., Zhou, P., Lan, Q.: Mentor initialed multiparty hierarchical joint remote preparation of an arbitrary n-qudit state via generalized bell states. Phys. Scr. 99(2), 025103 (2024)

    Article  ADS  Google Scholar 

  56. Mohanty, P., Jariwala, E.M.Q., Webb, R.A.: Intrinsic decoherence in mesoscopic systems. Phys. Rev. Lett. 78, 3366–3369 (1997)

    Article  ADS  Google Scholar 

  57. Braun, D., Haake, F., Strunz, W.T.: Universality of decoherence. Phys. Rev. Lett. 86, 2913–2917 (2001)

    Article  ADS  Google Scholar 

  58. Carvalho, A.R.R., Mintert, F., Buchleitner, A.: Decoherence and multipartite entanglement. Phys. Rev. Lett. 93, 230501 (2004)

    Article  ADS  Google Scholar 

  59. Lindner, B., Garcia-Ojalvo, J., Neiman, A., Schimansky-Geier, L.: Effects of noise in excitable systems. Phys. Rep. 392(6), 321–424 (2004)

    Article  ADS  Google Scholar 

  60. Tyloo, M., Coletta, T., Jacquod, P.: Robustness of synchrony in complex networks and generalized Kirchhoff indices. Phys. Rev. Lett. 120, 084101 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  61. Ronellenfitsch, H., Dunkel, J., Wilczek, M.: Optimal noise-canceling networks. Phys. Rev. Lett. 121, 208301 (2018)

    Article  ADS  Google Scholar 

  62. Banaszek, K.: Optimal quantum teleportation with an arbitrary pure state. Phys. Rev. A 62, 024301 (2000)

    Article  ADS  Google Scholar 

  63. Li, W.-L., Li, C.-F., Guo, G.-C.: Probabilistic teleportation and entanglement matching. Phys. Rev. A 61, 034301 (2000)

    Article  ADS  Google Scholar 

  64. Roa, L., Delgado, A., Fuentes-Guridi, I.: Optimal conclusive teleportation of quantum states. Phys. Rev. A 68, 022310 (2003)

    Article  ADS  Google Scholar 

  65. Roa, L., Groiseau, C.: Probabilistic teleportation without loss of information. Phys. Rev. A 91, 012344 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  66. Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–725 (1996)

    Article  ADS  Google Scholar 

  67. Pan, J.-W., Gasparoni, S., Ursin, R., Weihs, G., Zeilinger, A.: Experimental entanglement purification of arbitrary unknown states. Nature 423(6938), 417–422 (2003)

    Article  ADS  Google Scholar 

  68. Bombin, H., Martin-Delgado, M.A.: Topological quantum distillation. Phys. Rev. Lett. 97, 180501 (2006)

    Article  ADS  Google Scholar 

  69. Sheng, Y.-B., Zhou, L., Zhao, S.-M., Zheng, B.-Y.: Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs. Phys. Rev. A 85, 012307 (2012)

    Article  ADS  Google Scholar 

  70. Zwerger, M., Briegel, H.J., Dür, W.: Universal and optimal error thresholds for measurement-based entanglement purification. Phys. Rev. Lett. 110, 260503 (2013)

    Article  ADS  Google Scholar 

  71. Riera-Sàbat, F., Sekatski, P., Pirker, A., Dür, W.: Entanglement-assisted entanglement purification. Phys. Rev. Lett. 127, 040502 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  72. Luo, C.-C., Zhou, L., Zhong, W., Sheng, Y.-B.: Purification for hybrid logical qubit entanglement. Quantum Inf. Process. 21(8), 300 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  73. Yan, P.-S., Zhou, L., Zhong, W., Sheng, Y.-B.: Advances in quantum entanglement purification. Sci. China Phys. Mech. Astron. 66(5), 250301 (2023)

    Article  ADS  Google Scholar 

  74. Yan, P.-S., Zhou, L., Sheng, Y.-B.: Single-copy entanglement purification for Greenberger–Horne–Zeilinger states. J. Opt. Soc. Am. B 40(8), 2050–2057 (2023)

    Article  ADS  Google Scholar 

  75. Jonathan, D., Plenio, M.B.: Entanglement-assisted local manipulation of pure quantum states. Phys. Rev. Lett. 83(17), 3566 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  76. Daftuar, S., Klimesh, M.: Mathematical structure of entanglement catalysis. Phys. Rev. A 64, 042314 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  77. Dam, W., Hayden, P.: Universal entanglement transformations without communication. Phys. Rev. A 67, 060302 (2003)

    Article  MathSciNet  Google Scholar 

  78. Sanders, Y.R., Gour, G.: Necessary conditions for entanglement catalysts. Phys. Rev. A 79, 054302 (2009)

    Article  ADS  Google Scholar 

  79. Popescu, S.: Bell’s inequalities and density matrices: revealing “hidden’’ nonlocality. Phys. Rev. Lett. 74, 2619–2622 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  80. Peres, A.: Collective tests for quantum nonlocality. Phys. Rev. A 54, 2685–2689 (1996)

    Article  ADS  Google Scholar 

  81. Masanes, L.: All bipartite entangled states are useful for information processing. Phys. Rev. Lett. 96, 150501 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  82. Masanes, L., Liang, Y.-C., Doherty, A.C.: All bipartite entangled states display some hidden nonlocality. Phys. Rev. Lett. 100, 090403 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  83. Liang, Y.-C., Masanes, L., Rosset, D.: All entangled states display some hidden nonlocality. Phys. Rev. A 86, 052115 (2012)

    Article  ADS  Google Scholar 

  84. Ma, P.-C., Chen, G.-B., Li, X.-W., Zhan, Y.-B.: Hierarchically controlled remote preparation of an arbitrary single-qubit state by using a four-qubit entangled state. Quantum Inf. Process. 17(5), 1–10 (2018)

    Article  MathSciNet  Google Scholar 

  85. Choudhury, B.S., Samanta, S.: An optional remote state preparation protocol for a four-qubit entangled state. Quantum Inf. Process. 18(4), 1–10 (2019)

    Article  Google Scholar 

  86. Zhou, P., Lv, L.: Joint remote preparation of single-photon three-qubit state with hyperentangled state via linear-optical elements. Quantum Inf. Process. 19, 1–21 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  87. Jin, R.-H., Wei, W.-S., Zhou, P.: Hierarchical controlled remote preparation of an arbitrary m-qudit state with four-qudit cluster states. Quantum Inf. Process. 22(2), 113 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  88. Peng, J., Yang, Z., Tang, L., Peng, J.: Multicast-based multiparty remote state preparation of complex coefficient two-qubit states. Quantum Inf. Process. 22(3), 141 (2023)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (NSFC) under Grant No. 12274053.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization was performed by X.X. and C.L.; methodology by X.X. and C.L.; software by X.X.; writing—original draft preparation—by X.X.; writing—-review and editing—by X.X., S.H., and C.L.; discussion and suggestion by X.X., S.H., and C.L. All authors have read and agreed to the submitted version of the manuscript.

Corresponding author

Correspondence to Chong Li.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xin, X., He, S. & Li, C. Deterministic hierarchical joint remote state preparation via a non-maximally entangled state. Quantum Inf Process 23, 121 (2024). https://doi.org/10.1007/s11128-024-04329-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-024-04329-6

Keywords

Navigation