Skip to main content
Log in

Controlled bidirectional remote state preparation in noisy environment: a generalized view

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

It is shown that a realistic controlled bidirectional remote state preparation is possible using a large class of entangled quantum states having a particular structure. Existing protocols of probabilistic, deterministic and joint remote state preparation are generalized to obtain the corresponding protocols of controlled bidirectional remote state preparation (CBRSP). A general way of incorporating the effects of two well-known noise processes, the amplitude-damping and phase-damping noise, on the probabilistic CBRSP process is studied in detail by considering that noise only affects the travel qubits of the quantum channel used for the probabilistic CBRSP process. Also indicated is how to account for the effect of these noise channels on deterministic and joint remote state CBRSP protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. It is sufficient to consider \(|a\rangle \) and \(|b\rangle \) as single qubit states, but it is not essential. One may consider them as two-qubit in particular or n-qubit \((n>1)\) states in general, but that would only introduce additional complexity.

References

  1. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Pathak, A.: Elements of Quantum Computation and Quantum Communication. CRC Press, Boca Raton (2013)

    MATH  Google Scholar 

  3. Hillery, M., Buzek, V., Bertaiume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  4. Karlsson, A., Bourennane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58, 4394 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  5. Pathak, A., Banerjee, A.: Efficient quantum circuits for perfect and controlled teleportation of n-qubit non-maximally entangled states of generalized Bell-type. Int. J. Quantum Info. 9, 389 (2011)

    Article  MATH  Google Scholar 

  6. Wang, X.-W., Xia, L.-X., Wang, Z.-Y., Zhang, D.-Y.: Hierarchical quantum-information splitting. Opt. Commun. 283, 1196 (2010)

    Article  ADS  Google Scholar 

  7. Shukla, C., Pathak, A.: Hierarchical quantum communication. Phys. Lett. A 377, 1337 (2013)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63, 014302 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  9. Lo, H.K.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity. Phys. Rev. A 62, 012313 (2000)

    Article  ADS  Google Scholar 

  10. Bennett, C.H., DiVincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Remote state preparation. Phys. Rev. Lett. 87, 077902 (2001)

    Article  ADS  Google Scholar 

  11. Luo, M.-X., Deng, Y., Chen, X.-B., Yang, Y.-X.: The faithful remote preparation of general quantum states. Quantum Inf. Process. 12, 279–294 (2013)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. Huang, S.: Remote state preparation using positive operator-valued measures. Phys. Lett. A 377, 448–451 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  13. Zha, X.-W., Zou, Z.-C., Qi, J.-X., Song, H.-Y.: Bidirectional quantum controlled teleportation via five-qubit cluster state. Int. J. Theor. Phys. 52, 1740 (2013)

    Article  MathSciNet  Google Scholar 

  14. Zha, X.-W., Song, H.-Y., Ma, G.-L.: Bidirectional swapping quantum controlled teleportation based on maximally entangled five-qubit state (2010). quant-ph/1006.0052

  15. Shukla, C., Banerjee, A., Pathak, A.: Bidirectional controlled teleportation by using 5-qubit states: a generalized view. Int. J. Theor. Phys. 52, 3790 (2013)

    Article  MathSciNet  Google Scholar 

  16. Duan, Y.-J., Zha, X.-W., Sun, X.-M., Xia, J.-F.: Bidirectional quantum controlled teleportation via a maximally seven-qubit entangled state. Int. J. Theor. Phys. 53, 2697 (2014)

    Article  MATH  Google Scholar 

  17. Duan, Y.-J., Zha, X.-W.: Bidirectional quantum controlled teleportation via a six-qubit entangled state. Int. J. Theor. Phys. 53, 3780 (2014)

    Article  MATH  Google Scholar 

  18. Chen, Y.: Bidirectional quantum controlled teleportation by using a genuine six-qubit entangled state. Int. J. Theor. Phys. 54, 269–272 (2015)

    Article  Google Scholar 

  19. Fu, H.-Z., Tian, X.-L., Hu, Y.: A general method of selecting quantum channel for bidirectional quantum teleportation. Int. J. Theor. Phys. 53, 1840 (2014)

    Article  MATH  Google Scholar 

  20. An, Y.: Bidirectional controlled teleportation via six-qubit cluster state. Int. J. Theor. Phys. 52, 3870 (2013)

    Article  MATH  Google Scholar 

  21. Li, Y.-H., Nie, L.-P.: Bidirectional controlled teleportation by using a five-qubit composite GHZ-Bell state. Int. J. Theor. Phys. 52, 1630 (2013)

    Article  MathSciNet  Google Scholar 

  22. Li, Y.-H., Li, X.-L., Sang, M.-H., Nie, Y.-Y., Wang, Z.-S.: Bidirectional controlled quantum teleportation and secure direct communication using five-qubit entangled state. Quantum Inf. Process. 12, 3835 (2013)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. Liu, L.L., Hwang, T.: Controlled remote state preparation protocols via AKLT states. Quantum Inf. Process. 13, 1639 (2014)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. Wang, D., Ye, L.: Joint remote preparation of a class of four-qubit cluster-like states with tripartite entanglements and positive operator-valued measurements. Int. J. Theor. Phys. 52, 3075 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  25. Chen, Q.Q., Xia, Y., An, N.B.: Flexible deterministic joint remote state preparation with a passive receiver. Phys. Scr. 87, 025005 (2013)

    Article  ADS  Google Scholar 

  26. Wang, D., Ye, L.: Multiparty-controlled joint remote state preparation. Quantum Inf. Process. 12, 3223 (2013)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  27. Choudhury, B.S., Dhara, A.: Joint remote state preparation for two-qubit equatorial states. Quantum Inf. Process. 14, 373–379 (2015)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  28. Zhang, Z.-H., Shu, L., Mo, Z.-W., Zheng, J., Ma, S.-Y., Luo, M.-X.: Joint remote state preparation between multi-sender and multi-receiver. Quantum Inf. Process. 13, 1979–2005 (2014)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  29. Zhou, P., Li, H.-W., Long, L.-R.: Probabilistic multiparty joint remote preparation of an arbitrary m-qubit state with a pure entangled channel against collective noise. Int. J. Theor. Phys. 52, 849–861 (2013)

    Article  MATH  Google Scholar 

  30. Luo, M.-X., Peng, J.-Y., Mo, Z.-W.: Joint remote preparation of an arbitrary five-qubit brown state. Int. J. Theor. Phys. 52, 644–653 (2013)

    Article  MATH  Google Scholar 

  31. Jiang, M., Jiang, F.: Deterministic joint remote preparation of arbitrary multi-qudit states. Phys. Lett. A 377, 2524–2530 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  32. Zhan, Y.-B., Ma, P.C.: Deterministic joint remote preparation of arbitrary two- and three-qubit entangled states. Quantum Inf. Process. 12, 997–1009 (2013)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  33. Huelga, S.F., Vaccaro, J.A., Chefles, A., Plenio, M.B.: Quantum remote control: teleportation of unitary operations. Phys. Rev. A 63, 042303 (2001)

    Article  ADS  Google Scholar 

  34. Huelga, S.F., Plenio, M.B., Vaccaro, J.A.: Remote control of restricted sets of operations: teleportation of angles. Phys. Rev. A 65, 042316 (2002)

    Article  ADS  Google Scholar 

  35. An, N.B., Cao, T.B., Nung, V.D., Kim, J.: Remote state preparation with unit success probability. Adv. Nat. Sci. Nanosci. Nanotechnol. 2, 035009 (2011)

    Article  ADS  Google Scholar 

  36. Dai, H.Y., Chen, P.X., Liang, L.M., Li, C.Z.: Classical communication cost and remote preparation of the four-particle GHZ class state. Phys. Lett. A 355, 285 (2006)

    Article  ADS  Google Scholar 

  37. Ma, P.-C., Zhan, Y.-B.: Scheme for probabilistic remotely preparing a multi-particle entangled GHZ state. Chin. Phys. B 17, 445 (2008)

    Article  ADS  Google Scholar 

  38. Ma, P.-C., Zhan, Y.-B.: Scheme for remotely preparing a four-particle entangled cluster-type state. Opt. Commun. 283, 2640 (2010)

    Article  ADS  Google Scholar 

  39. Zhan, Y.-B., Fu, H., Li, X.-W., Ma, P.-C.: Deterministic remote preparation of a four-qubit cluster-type entangled state. Int. J. Theor. Phys. 52, 2615 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  40. Peng, J.-Y., Luo, M.-X., Mo, Z.-W.: Joint remote state preparation of arbitrary two-particle states via GHZ-type states. Quantum Inf. Process. 12, 2325 (2013)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  41. Chen, Q.Q., Xia, Y., Song, J., An, N.B.: Joint remote state preparation of a W-type state via W-type states. Phys. Lett. A 374, 4483 (2010)

    Article  MATH  ADS  Google Scholar 

  42. An, N.B.: Joint remote state preparation via W and W-type states. Opt. Commun. 283, 4113 (2010)

    Article  ADS  Google Scholar 

  43. An, N.B., Kim, J.: Joint remote state preparation. J. Phys. B 41, 095501 (2008)

    Article  ADS  Google Scholar 

  44. Wang, Z.Y., Liu, Y.M., Zuo, X.Q., Zhang, Z.J.: Controlled remote state preparation. Commun. Theor. Phys. 52, 235 (2009)

    Article  MATH  ADS  Google Scholar 

  45. Guan, X.W., Chen, X.B., Yang, Y.X.: Controlled-joint remote preparation of an arbitrary two-qubit state via non-maximally entangled channel. Int. J. Theor. Phys. 51, 3575 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  46. An, N.B., Cao, T.B., Nung, V.D.: Deterministic joint remote state preparation. Phys. Lett. A 375, 3570 (2011)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  47. Cao, T.B., An, N.B.: Deterministic controlled bidirectional remote state preparation. Adv. Nat. Sci. Nanosci. Nanotechnol. 5, 015003 (2014)

    Article  ADS  Google Scholar 

  48. Turchette, Q.A., Myatt, C.J., King, B.E., Sackett, C.A., Kielpinski, D., Itano, W.M., Monroe, C., Wineland, D.J.: Decoherence and decay of motional quantum states of a trapped atom coupled to engineered reservoirs. Phys. Rev. A 62, 053807 (2000)

    Article  ADS  Google Scholar 

  49. Myatt, C.J., King, B.E., Turchette, Q.A., Sackett, C.A., Kielpinski, D., Itano, W.M., Monroe, C., Wineland, D.J.: Decoherence of quantum superpositions through coupling to engineered reservoirs. Nature 403, 269 (2000)

    Article  ADS  Google Scholar 

  50. Banerjee, S., Srikanth, R.: Geometric phase of a qubit interacting with a squeezed-thermal bath. Eur. Phys. J. D 46, 335 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  51. Srikanth, R., Banerjee, S.: Squeezed generalized amplitude damping channel. Phys. Rev. A 77, 012318 (2008)

    Article  ADS  Google Scholar 

  52. Banerjee, S., Ghosh, R.: Dynamics of decoherence without dissipation in a squeezed thermal bath. J. Phys. A Math. Theor. 40, 13735 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  53. Ye, M.-Y., Zhang, Y.-S., Guo, G.-C.: Faithful remote state preparation using finite classical bits and a nonmaximally entangled state. Phys. Rev. A 69, 022310 (2004)

    Article  ADS  Google Scholar 

  54. Berry, D.W.: Resources required for exact remote state preparation. Phys. Rev. A 70, 062306 (2004)

    Article  ADS  Google Scholar 

  55. Hua, C., Chen, Y.-X.: A scheme for remote state preparation of a general pure qubit with optimized classical communication cost. Quantum Inf. Process. 14, 1069 (2015)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  56. Guan, X.-W., Chen, X.-B., Wang, L.-C., Yang, Y.-X.: Joint remote preparation of an arbitrary two-qubit state in noisy environments. Int. J. Theor. Phys. 53, 2236 (2014)

    Article  MATH  Google Scholar 

  57. Peters, N.A., Barreiro, J.T., Goggin, M.E., Wei, T.C., Kwiat, P.G.: Remote state preparation: arbitrary remote control of photon polarization. Phys. Rev. Lett. 94, 150502 (2005)

    Article  ADS  Google Scholar 

  58. Liu, W.T., Wu, W., Ou, B.Q., Chen, P.X., Li, C.Z., Yuan, J.M.: Experimental remote preparation of arbitrary photon polarization states. Phys. Rev. A 76, 022308 (2007)

    Article  ADS  Google Scholar 

  59. Knoll, L.T., Schmiegelow, C.T., Larotonda, M.A.: Remote state preparation of a photonic quantum state via quantum teleportation. Appl. Phys. B 115, 541 (2014)

    Article  ADS  Google Scholar 

  60. Xiang, G.Y., Li, J., Yu, B., Guo, G.C.: Remote preparation of mixed states via noisy entanglement. Phys. Rev. A 72, 012315 (2005)

    Article  ADS  Google Scholar 

  61. Rådmark, M., Wieśniak, M., Żukowski, M., Bourennane, M.: Experimental multilocation remote state preparation. Phys. Rev. A 88, 032304 (2013)

    Article  ADS  Google Scholar 

  62. Peng, X., Zhu, X., Fang, X., Feng, M., Liu, M., Gao, K.: Experimental implementation of remote state preparation by nuclear magnetic resonance. Phys. Lett. A 306, 271 (2003)

    Article  ADS  Google Scholar 

  63. Zhao, Z., Chen, Y.A., Zhang, A.N., Yang, T., Briegel, H.J., Pan, J.W.: Experimental demonstration of five-photon entanglement and open-destination teleportation. Nature 430, 54–58 (2004)

    Article  ADS  Google Scholar 

  64. O’Brien, J.L., Pryde, G.J., White, A.G., Ralph, T.C., Branning, D.: Demonstration of an all-optical quantum controlled-NOT gate. Nature 426(6964), 264–267 (2003)

    Article  ADS  Google Scholar 

  65. Lu, C.-Y., Zhou, X.-Q., Gühne, O., Gao, W.-B., Zhang, J., Yuan, Z.-S., Goebel, A., Yang, T., Pan, J.-W.: Experimental entanglement of six photons in graph states. Nat. Phys. 3, 91 (2007)

    Article  Google Scholar 

  66. Monz, T., Schindler, P., Barreiro, J.T., Chwalla, M., Nigg, D., Coish, W.A., Harlander, M., Hänsel, W., Hennrich, M., Blatt, R.: 14-qubit entanglement: creation and coherence. Phys. Rev. Lett. 106, 130506 (2011)

    Article  ADS  Google Scholar 

  67. Gao, W.B., Lu, C.Y., Yao, X.C., Xu, P., Gühne, O., Goebel, A., Chen, Y.-A., Peng, C.-Z., Chen, Z.-B., Pan, J.W.: Experimental demonstration of a hyper-entangled ten-qubit Schr ödinger cat state. Nat. Phys. 6(5), 331–335 (2010)

    Article  Google Scholar 

  68. Wieczorek, W., Krischek, R., Kiesel, N., Michelberger, P., Tóth, G., Weinfurter, H.: Experimental entanglement of a six-photon symmetric Dicke state. Phys. Rev. Lett. 103, 020504 (2009)

    Article  ADS  Google Scholar 

  69. Campbell, S., Tame, M.S., Paternostro, M.: Characterizing multipartite symmetric Dicke states under the effects of noise. New J. Phys. 11, 073039 (2009)

    Article  ADS  Google Scholar 

  70. Luo, M.X., Chen, X.B., Yang, Y.X., Niu, X.X.: Experimental architecture of joint remote state preparation. Quantum Inf. Process. 11, 751 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  71. Wei, J., Dai, H.-Y., Zhang, M.: Two efficient schemes for probabilistic remote state preparation and the combination of both schemes. Quantum Inf. Process. 13, 2115 (2014)

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgments

AP thanks Department of Science and Technology (DST), India, for support provided through the DST project No. SR/S2/LOP-0012/2010. He also thanks N. B. An and Kishore Thapliyal for some technical discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirban Pathak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, V., Shukla, C., Banerjee, S. et al. Controlled bidirectional remote state preparation in noisy environment: a generalized view. Quantum Inf Process 14, 3441–3464 (2015). https://doi.org/10.1007/s11128-015-1038-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1038-5

Keywords

Navigation