Skip to main content
Log in

Joint remote preparation of single-photon three-qubit state with hyperentangled state via linear-optical elements

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Transmitting quantum states securely and efficiently is an important task in quantum communication. In this article, we investigate the protocols for joint remote preparation of arbitrary three-qubit states with three-photon hyperentangled states simultaneously entangled in three degrees of freedom. First, we propose a protocol for deterministic joint remote preparation of a three-qubit state via a hyperentangled state simultaneously entangled in three degrees of freedom based on quantum state initialization. Second, we present a scheme for recursive joint remote preparation of the state via partially hyperentangled state, resorting to linear-optical elements only. The protocol has the advantage of having high channel capacity for joint remote preparing an arbitrary three-qubit state via hyperentangled state. Moreover, it is more convenient in application since it only requires linear-optical elements for joint remote preparation of arbitrary three-qubit state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)

    ADS  MathSciNet  MATH  Google Scholar 

  2. Liu, X.S., Long, G.L., Tong, D.M., Li, F.: General scheme for superdense coding between multiparties. Phys. Rev. A 65, 022304 (2002)

    ADS  Google Scholar 

  3. Barreiro, J.T., Wei, T.C., Kwiat, P.G.: Beating the channel capacity limit for linear photonic superdense coding. Nat. Phys. 4, 282–286 (2008)

    Google Scholar 

  4. Williams, B.P., Sadlier, R.J., Humble, T.S.: Superdense coding over optical fiber links with complete Bell-state measurements. Phys. Rev. Lett. 118, 050501 (2017)

    ADS  Google Scholar 

  5. Li, X.H., Ghose, S.: Hyperentangled Bell-state analysis and hyperdense coding assisted by auxiliary entanglement. Phys. Rev. A 96, 020303 (2017)

    ADS  Google Scholar 

  6. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett 70, 1895–1899 (1993)

    ADS  MathSciNet  MATH  Google Scholar 

  7. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575–579 (1997)

    ADS  MATH  Google Scholar 

  8. Ren, J.G., Xu, P., Yong, H.L., Zhang, L., Liao, S.K., Yin, J., Liu, W.Y., Cai, W.Q., Yang, M., Li, L., Yang, K.X., Han, X., Yao, Y.Q., Li, J., Wu, H.Y., Wan, S., Liu, L., Liu, D.Q., Kuang, Y.W., He, Z.P., Shang, P., Guo, C., Zheng, R.H., Tian, K., Zhu, Z.C., Liu, N.L., Lu, C.Y., Shu, R., Chen, Y.A., Peng, C.Z., Wang, J.Y., Pan, J.W.: Ground-to-satellite quantum teleportation. Nature 549, 7670 (2017)

    Google Scholar 

  9. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    ADS  Google Scholar 

  10. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    ADS  Google Scholar 

  11. Hu, J.Y., Yu, B., Jing, M.Y., Xiao, L.T., Jia, S.T., Qin, G.Q., Long, G.L.: Experimental quantum secure direct communication with single photons. Light Sci. Appl. 5, e16144 (2016)

    Google Scholar 

  12. Zhang, W., Ding, D.S., Sheng, Y.B., Zhou, L., Shi, B.S., Guo, G.C.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118, 220501 (2017)

    ADS  Google Scholar 

  13. Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63, 014302 (2000)

    ADS  Google Scholar 

  14. Lo, H.K.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity. Phys. Rev. A 62, 012313 (2000)

    ADS  Google Scholar 

  15. Bennett, C.H., DiVincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Remote state preparation. Phys. Rev. Lett. 87, 077902 (2001)

    ADS  Google Scholar 

  16. Jeannic, H.L., Cavailles, A., Raskop, J., Huang, K., Laurat, J.: Remote preparation of continuous-variable qubits using loss-tolerant hybrid entanglement of light. Optica 5, 1012–1015 (2018)

    ADS  Google Scholar 

  17. An, N.B., Kim, J.: Joint remote state preparation. J. Phys. B 41, 095501 (2008)

    ADS  Google Scholar 

  18. Wang, D., Ye, L.: Multiparty-controlled joint remote state preparation. Quantum Inf. Process. 12, 3223 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  19. An, N.B., Bich, C.T.: Perfect controlled joint remote state preparation independent of entanglement degree of the quantum channel. Phys. Lett. A 378, 3582–3585 (2014)

    ADS  MATH  Google Scholar 

  20. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of the 35th Annual IEEE Symposium on Foundations of Computer Science, p. 124 (1994)

  21. Long, G.L., Xiao, L.: Parallel quantum computing using a single ensemble quantum computer. Phys. Rev. A 69, 052303 (2004)

    ADS  MathSciNet  Google Scholar 

  22. Feng, G.R., Xu, G.F., Long, G.L.: Experimental realization of nonadiabatic holonomic quantum computation. Phys. Rev. Lett. 110, 190501 (2013)

    ADS  Google Scholar 

  23. Ren, B.C., Deng, F.G.: Hyper-parallel photonic quantum computation with coupled quantum dots. Sci. Rep. 4, 4623 (2014)

    Google Scholar 

  24. Ren, B.C., Wang, G.Y., Deng, F.G.: Universal hyperparallel hybrid photonic quantum gates with dipole-induced transparency in the weak-coupling regime. Phys. Rev. A 91, 032328 (2015)

    ADS  Google Scholar 

  25. Li, T., Long, G.L.: Hyperparallel optical quantum computation assisted by atomic ensembles embedded in double-sided optical cavities. Phys. Rev. A 94, 022343 (2016)

    ADS  Google Scholar 

  26. Li, T., Deng, F.G.: Error-rejecting quantum computing with solid-state spins assisted by low-optical microcavities. Phys. Rev. A 94, 062310 (2016)

    ADS  Google Scholar 

  27. Song, X.K., Ai, Q., Qiu, J., Deng, F.G.: Physically feasible three-level transitionless quantum driving with multiple Schrodinger dynamics. Phys. Rev. A 93, 052324 (2016)

    ADS  Google Scholar 

  28. Song, X.K., Zhang, H., Ai, Q., Qiu, J., Deng, F.G.: Shortcuts to adiabatic holonomic quantum computation in decoherence-free subspace with transitionless quantum driving algorithm. New J. Phys. 18, 023001 (2016)

    ADS  Google Scholar 

  29. Ren, B.C., Deng, F.G.: Robust hyperparallel photonic quantum entangling gate with cavity QED. Opt. Express 25, 10863–10873 (2017)

    ADS  Google Scholar 

  30. Reimer, C., Sciara, S., Roztocki, P., Islam, M., Cortés, L.R., Zhang, Y.B., Fischer, B., Loranger, S., Kashyap, R., Cino, A., Chu, S.T., Little, B.E., Moss, D.J., Caspani, L., Munro, W.J., Azaña, J., Kues, M., Morandotti, R.: High-dimensional one-way quantum processing implemented on d-level cluster states. Nat. Phys. 15, 148–153 (2019)

    Google Scholar 

  31. Zhou, Q., Valivarthi, R., John, C., Tittel, W.: Practical quantum random-number generation based on sampling vacuum fluctuations. Quantum Eng. 1, e8 (2019)

    Google Scholar 

  32. Sillanp\(\ddot{a}\ddot{a}\), M.A., Park, J.I., Simmonds, R.W.: Coherent quantum state storage and transfer between two phase qubits via a resonant cavity. Nature 449, 438 (2007)

  33. Tao, M.J., Hua, M., Ai, Q., Deng, F.G.: Quantum-information processing on nitrogen-vacancy ensembles with the local resonance assisted by circuit QED. Phys. Rev. A 91, 092325 (2015)

    Google Scholar 

  34. Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722 (1996)

    ADS  Google Scholar 

  35. Sheng, Y.B., Deng, F.G.: Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement. Phys. Rev. A 81, 032307 (2010)

    ADS  Google Scholar 

  36. Sheng, Y.B., Deng, F.G.: One-step deterministic polarization-entanglement purification using spatial entanglement. Phys. Rev. A 82, 044305 (2010)

    ADS  Google Scholar 

  37. Wang, C., Sheng, W.W., Wang, T.J.: One-step deterministic polarization-entanglement purification using spatial entanglement. Sci. Bull. 60, 2016 (2015)

    Google Scholar 

  38. Zhou, L., Sheng, Y.B.: Purification of logic-qubit entanglement. Sci. Rep. 6, 28813 (2016)

    ADS  Google Scholar 

  39. Li, T., Yang, G.J., Deng, F.G.: Heralded quantum repeater for a quantum communication network based on quantum dots embedded in optical microcavities. Phys. Rev. A 93, 012302 (2016)

    ADS  Google Scholar 

  40. Leung, D.W., Shor, P.W.: Obvously remote state preparation. Phys. Rev. Lett. 90, 127905 (2003)

    ADS  Google Scholar 

  41. Ye, M.Y., Zhang, Y.S., Guo, G.C.: Faithful remote state preparation using finite classical bits and a nonmaximally entangled state. Phys. Rev. A 69, 022310 (2004)

    ADS  Google Scholar 

  42. Devetak, I., Berger, T.: Low-entanglement remote state preparation. Phys. Rev. Lett. 87, 177901 (2001)

    ADS  Google Scholar 

  43. Zeng, B., Zhang, P.: Remote-state preparation in higher dimension and the parallelizable manifold \(S^{n-1}\). Phys. Rev. A 65, 022316 (2002)

    ADS  Google Scholar 

  44. Berry, D.W., Sanders, B.C.: Optimal remote state preparation. Phys. Rev. Lett. 90, 027901 (2003)

    Google Scholar 

  45. Liu, J.M., Feng, X.L., Oh, C.H.: Remote state preparation of arbitrary two- and three-qubit states. Europhys. Lett. 87, 30006 (2009)

    ADS  Google Scholar 

  46. Peng, X.H., Zhu, X.W., Fang, X.M., Fang, M., Liu, M.L., Gao, K.L.: Experimental implementation of remote state preparation by nuclear magnetic resonance. Phys. Lett. A 306, 271 (2003)

    ADS  Google Scholar 

  47. Rosenfeld, W., Berner, S., Volz, J., Weber, M., Weinfurter, H.: Remote preparation of an atomic quantum memory. Phys. Rev. Lett. 98, 050504 (2007)

    ADS  Google Scholar 

  48. Wu, W., Liu, W.T., Chen, P.X., Li, C.Z.: Deterministic remote preparation of pure and mixed polarization states. Phys. Rev. A 81, 042301 (2010)

    ADS  Google Scholar 

  49. Killoran, N., Biggerstaff, D.N., Kaltenbaek, R., Resch, K.J., Lütkenhaus, N.: Derivation and experimental test of fidelity benchmarks for remote preparation of arbitrary qubit states. Phys. Rev. A 81, 012334 (2010)

    ADS  Google Scholar 

  50. Xia, Y., Song, J., Song, H.S.: Multiparty remote state preparation. J. Phys. B 40, 3719–3724 (2007)

    ADS  Google Scholar 

  51. An, N.B.: Joint remote state preparation of a general two-qubit state. J. Phys. B 42, 125501 (2009)

    ADS  Google Scholar 

  52. Xiao, X.Q., Liu, J.M., Zeng, G.H.: Joint remote state preparation of arbitrary two-and three-qubit states. J. Phys. B 44, 075501 (2011)

    ADS  Google Scholar 

  53. Adepoju, A.G., Falaye, B.J., Sun, G.H., Camacho-Nieto, O., Dong, S.H.: Joint remote state preparation (JRSP) of two-qubit equatorial state in quantum noisy channels. Phys. Lett. A 381, 581 (2017)

    ADS  Google Scholar 

  54. Bich, C.T., Van Hop, N., An, N.B.: Deterministic joint remote preparation of an equatorial hybrid state via high-dimensional Einstein–Podolsky–Rosen pairs: active versus passive receiver. Quantum Inf. Process. 17, 75 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  55. Choudhury, B.S., Samanta, S.: Perfect joint remote state preparation of arbitrary six-qubit cluster-type states. Quantum Inf. Process. 17, 175 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  56. Kwiat, P.G.: Hyper-entangled states. J. Mod. Opt. 44, 2173–2184 (1997)

    ADS  MathSciNet  MATH  Google Scholar 

  57. Sheng, Y.B., Deng, F.G., Long, G.L.: Complete hyperentangled-Bell-state analysis for quantum communication. Phys. Rev. A 82, 032318 (2010)

    ADS  Google Scholar 

  58. Barreiro, J.T., Wei, T.C., Kwiat, P.G.: Remote preparation of single-photon hybrid entangled and vector-polarization states. Phys. Rev. Lett. 105, 030407 (2010)

    ADS  Google Scholar 

  59. Graham, T.M., Bernstein, H.J., Wei, T.C., Junge, M., Kwiat, P.G.: Superdense teleportation using hyperentangled photons. Nat. Commun. 6, 7185 (2015)

    ADS  Google Scholar 

  60. Luo, M.X., Li, H.R., Lai, H., Wang, X.: Teleportation of a ququart system using hyperentangled photons assisted by atomic-ensemble memories. Phys. Rev. A 93, 012332 (2016)

    ADS  Google Scholar 

  61. Nawaz, M., Ikram, M.: Remote state preparation through hyperentangled atomic states. J. Phys. B 51, 075501 (2018)

    ADS  Google Scholar 

  62. Vallone, G., Ceccarelli, R., DeMartini, F., Mataloni, P.: Hyperentanglement of two photons in three degrees of freedom. Phys. Rev. A 79, 030301(R) (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  63. Wang, G.Y., Liu, Q., Deng, F.G.: Hyperentanglement purification for two-photon six-qubit quantum systems. Phys. Rev. A 94, 032319 (2016)

    ADS  Google Scholar 

  64. Wang, X.L., Cai, X.D., Su, Z.E., Chen, M.C., Wu, D., Li, L., Liu, N.L., Lu, C.Y., Pan, J.W.: Quantum teleportation of multiple degrees of freedom of a single photon. Nature 518, 516 (2015)

    ADS  Google Scholar 

  65. Ren, B.C., Deng, F.G.: Hyperentanglement purification and concentration assisted by diamond NV centers inside photonic crystal cavities. Laser Phys. Lett. 10, 115201 (2013)

    ADS  Google Scholar 

  66. Deng, F.G., Ren, B.C., Li, X.H.: Quantum hyperentanglement and its applications in quantum information processing. Sci. Bull. 62, 46 (2017)

    Google Scholar 

  67. Zhou, P., Jiao, X.F., Lv, S.X.: Parallel remote state preparation of arbitrary single-qubit states via linear-optical elements by using hyperentangled Bell states as the quantum channel. Quantum Inf. Process. 17, 298 (2018)

    ADS  MATH  Google Scholar 

  68. Zheng, Y.Y., Liang, L.X., Zhang, M.: Self-assisted complete analysis of three-photon hyperentangled Greenberger–Horne–Zeilinger states with nitrogen-vacancy centers in microcavities. Quantum Inf. Process. 17, 172 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  69. Wu, F.Z., Yang, G.J., Wang, H.B., Xiong, J., Alzahrani, F., Hobiny, A., Deng, F.G.: High-capacity quantum secure direct communication with two-photon six-qubit hyperentangled states. Sci. China Phys. Mech. Astron. 60, 120313 (2017)

    ADS  Google Scholar 

  70. Ren, B.C., Wei, H.R., Deng, F.G.: Deterministic photonic spatial-polarization hyper-controlled-not gate assisted by quantum dot inside one-side optical microcavity. Laser Phys. Lett. 10, 095202 (2013)

    ADS  Google Scholar 

  71. Zhou, P., Lv, L.: Hyper-parallel nonlocal CNOT operation with hyperentanglement assisted by cross-Kerr nonlinearity. Sci. Rep. 9, 15939 (2019)

    ADS  Google Scholar 

  72. Long, G.L., Sun, Y.: Efficient scheme for initializing a quantum register with an arbitrary superposed state. Phys. Rev. A 64, 014303 (2001)

    ADS  Google Scholar 

  73. Jiao, X.F., Zhou, P., Lv, S.X., Wang, Z.Y.: Remote preparation for single-photon two-qubit hybrid state with hyperentanglement via linear-optical elements. Sci. Rep. 9, 4663 (2019)

    ADS  Google Scholar 

  74. Li, C.Y., Shen, Y.: Asymmetrical hyperentanglement concentration for entanglement of polarization and orbital angular momentum. Opt. Express 27, 13127–13181 (2019)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. 11564004 and 61501129, Natural Science Foundation of Guangxi under Grant Nos. 2014GXNSFAA118008, Special Funds of Guangxi Distinguished Experts Construction Engineering and Xiangsihu Young Scholars and Innovative Research Team of GXUN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, P., Lv, L. Joint remote preparation of single-photon three-qubit state with hyperentangled state via linear-optical elements. Quantum Inf Process 19, 283 (2020). https://doi.org/10.1007/s11128-020-02784-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02784-5

Keywords

Navigation