Skip to main content
Log in

Fiber-based quantum secure direct communication without active polarization compensation

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Quantum secure direct communication (QSDC) that allows people to directly transmit confidential information through insecure channels is an important branch of quantum communication. The widespread adoption of the QSDC demands the development of simple and stable systems. However, most of the existent QSDC systems involve a complex self-alignment process at the initial stage and additional hardware to compensate environmental disturbance. In this study, we present a fiber-based QSDC system without active polarization compensation. Our system comprises a stable transmitter and a novel Sagnac-Mach-Zehnder interferometer for security detection. This robust system simplifies the self-alignment and is immune to environmental disturbance. The robustness of the system was theoretically and experimentally verified, and low bit error rates in a 12 min continuous operation with an active polarization scrambler were attained. In addition, we performed a proof-of-principle QSDC demonstration, and a secrecy capacity of 3.43 kbps over a 5 km fiber with a detection bit error rate of 0.85% ± 0.07% and a quantum bit error rate of 0.42% ± 0.05% were achieved. Experimental results confirm the viability of the proposed QSDC system for practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Shor, in Algorithms for quantum computation: Discrete logarithms and factoring: Proceedings of the 35th Annual Symposium on Foundations of Computer Science, Santa Fe, 2002. 124–134.

  2. L. K. Grover, in A fast quantum mechanical algorithm for database search: Proceedings of the 28th Annual ACM Symposium on Theory of Computing, Philadelphia, 1996. 212–219.

  3. G. L. Long, and X. S. Liu, Phys. Rev. A 65, 032302 (2002), arXiv: quant-ph/0012056.

    Article  ADS  Google Scholar 

  4. C. Wang, Fundamental Res. 1, 91 (2021).

    Article  Google Scholar 

  5. J. Wu, Z. Lin, L. Yin, and G. L. Long, Quantum Eng. 1, e26 (2019).

    Article  Google Scholar 

  6. F. G. Deng, G. L. Long, and X. S. Liu, Phys. Rev. A 68, 042317 (2003), arXiv: quant-ph/0308173.

    Article  ADS  Google Scholar 

  7. F. G. Deng, and G. L. Long, Phys. Rev. A 69, 052319 (2004), arXiv: quant-ph/0405177.

    Article  ADS  Google Scholar 

  8. S. S. Chen, L. Zhou, W. Zhong, and Y. B. Sheng, Sci. China-Phys. Mech. Astron. 61, 090312 (2018).

    Article  Google Scholar 

  9. L. Yang, J. W. Wu, Z. S. Lin, L. G. Yin, and G. L. Long, Sci. China-Phys. Mech. Astron. 63, 110311 (2020).

    Article  ADS  Google Scholar 

  10. S. H. Sun, and G. L. Long, Quantum Eng. 3, e86 (2021).

    Article  Google Scholar 

  11. X. Liu, Z. Li, D. Luo, C. Huang, D. Ma, M. Geng, J. Wang, Z. Zhang, and K. Wei, Sci. China-Phys. Mech. Astron. 64, 120311 (2021).

    Article  ADS  Google Scholar 

  12. X. T. Feng, J. Y. Song, and C. Wang, Int. J. Quantum Inform. 20, 2250010 (2022).

    Article  ADS  Google Scholar 

  13. J. Wu, G. L. Long, and M. Hayashi, Phys. Rev. Appl. 17, 064011 (2022), arXiv: 2112.15113.

    Article  ADS  Google Scholar 

  14. G. L. Long, and H. Zhang, Sci. Bull. 66, 1267 (2021).

    Article  Google Scholar 

  15. Z. Sun, L. Song, Q. Huang, L. Yin, G. Long, J. Lu, and L. Hanzo, IEEE Trans. Commun. 68, 5778 (2020).

    Article  Google Scholar 

  16. Z. R. Zhou, Y. B. Sheng, P. H. Niu, L. G. Yin, G. L. Long, and L. Hanzo, Sci. China-Phys. Mech. Astron. 63, 230362 (2020), arXiv: 1805.07228.

    Article  ADS  Google Scholar 

  17. P. H. Niu, Z. R. Zhou, Z. S. Lin, Y. B. Sheng, L. G. Yin, and G. L. Long, Sci. Bull. 63, 1345 (2018).

    Article  Google Scholar 

  18. Z. Gao, T. Li, and Z. Li, Europhys. Lett. 125, 40004 (2019).

    Article  ADS  Google Scholar 

  19. L. Zhou, Y. B. Sheng, and G. L. Long, Sci. Bull. 65, 12 (2020).

    Article  Google Scholar 

  20. L. Zhou, and Y.-B. Sheng, Sci. China-Phys. Mech. Astron. 65, 250311 (2022).

    Article  ADS  Google Scholar 

  21. F. G. Deng, H. Y. Zhou, and G. L. Long, J. Phys. A-Math. Gen. 39, 14089 (2006), arXiv: quant-ph/0612018.

    Article  ADS  Google Scholar 

  22. F. G. Deng, X. H. Li, C. Y. Li, P. Zhou, and H. Y. Zhou, Chin. Phys. 16, 3553 (2007), arXiv: quant-ph/0606008.

    Article  Google Scholar 

  23. Z. Qi, Y. Li, Y. Huang, J. Feng, Y. Zheng, and X. Chen, Light Sci. Appl. 10, 183 (2021), arXiv: 2106.13509.

    Article  ADS  Google Scholar 

  24. J. H. Shapiro, Z. Zhang, and F. N. C. Wong, Quantum Inf. Process. 13, 2171 (2014).

    Article  MathSciNet  ADS  Google Scholar 

  25. F. Del Santo, and B. Dakić, Phys. Rev. Lett. 120, 060503 (2018), arXiv: 1706.08144.

    Article  ADS  Google Scholar 

  26. F. Massa, A. Moqanaki, A. Baumeler, F. Del Santo, J. A. Kettlewell, B. Dakić, and P. Walther, Adv. Quantum Tech. 2, 1900050 (2019).

    Article  Google Scholar 

  27. J. H. Shapiro, D. M. Boroson, P. B. Dixon, M. E. Grein, and S. A. Hamilton, J. Opt. Soc. Am. B 36, B41 (2019).

    Article  Google Scholar 

  28. Y. B. Sheng, L. Zhou, and G. L. Long, Sci. Bull. 67, 367 (2022).

    Article  Google Scholar 

  29. C. Y. Gao, P. L. Guo, and B. C. Ren, Quantum Eng. 3, e83 (2021).

    Article  Google Scholar 

  30. Z. Huang, Z. Rong, X. Zou, and Z. He, Quantum Inf. Process. 20, 375 (2021).

    Article  ADS  Google Scholar 

  31. Z. Rong, D. Qiu, P. Mateus, and X. Zou, Quantum Inf. Process. 20, 58 (2021).

    Article  ADS  Google Scholar 

  32. S. Srikara, K. Thapliyal, and A. Pathak, Quantum Inf. Process. 19, 132 (2020), arXiv: 1909.09697.

    Article  ADS  Google Scholar 

  33. Z. Cao, L. Wang, K. Liang, G. Chai, and J. Peng, Phys. Rev. Appl. 16, 024012 (2021).

    Article  ADS  Google Scholar 

  34. J. Y. Hu, B. Yu, M. Y. Jing, L. T. Xiao, S. T. Jia, G. Q. Qin, and G. L. Long, Light Sci. Appl. 5, e16144 (2016), arXiv: 1503.00451.

    Article  Google Scholar 

  35. F. Zhu, W. Zhang, Y. Sheng, and Y. Huang, Sci. Bull. 62, 1519 (2017), arXiv: 1710.07951.

    Article  Google Scholar 

  36. W. Zhang, D. S. Ding, Y. B. Sheng, L. Zhou, B. S. Shi, and G. C. Guo, Phys. Rev. Lett. 118, 220501 (2017), arXiv: 1609.09184.

    Article  ADS  Google Scholar 

  37. R. Qi, Z. Sun, Z. Lin, P. Niu, W. Hao, L. Song, Q. Huang, J. Gao, L. Yin, and G. L. Long, Light Sci. Appl. 8, 22 (2019), arXiv: 1810.11806.

    Article  ADS  Google Scholar 

  38. D. Pan, Z. Lin, J. Wu, H. Zhang, Z. Sun, D. Ruan, L. Yin, and G. L. Long, Photon. Res. 8, 1522 (2020).

    Article  Google Scholar 

  39. H. Zhang, Z. Sun, R. Qi, L. Yin, G. L. Long, and J. Lu, Light Sci. Appl. 11, 83 (2022).

    Article  ADS  Google Scholar 

  40. A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, Appl. Phys. Lett. 70, 793 (1997), arXiv: quant-ph/9611042.

    Article  ADS  Google Scholar 

  41. S. H. Sun, H. Q. Ma, J. J. Han, L. M. Liang, and C. Z. Li, Opt. Lett. 35, 1203 (2010).

    Article  ADS  Google Scholar 

  42. H. Q. Ma, K. J. Wei, and J. H. Yang, Opt. Lett. 38, 4494 (2013).

    Article  ADS  Google Scholar 

  43. K. J. Wei, H. Q. Ma, and J. H. Yang, Opt. Express 21, 16663 (2013).

    Article  ADS  Google Scholar 

  44. Z. Chen, L. Yin, Y. Pei, and J. Lu, Sci. China Inf. Sci. 59, 102309 (2016).

    Article  Google Scholar 

  45. P. Wang, L. Yin, and J. Lu, Tsinghua Sci. Tech. 23, 323 (2018).

    Article  Google Scholar 

  46. Q. Huang, and S. Yuan, IEEE Trans. Commun. 64, 38 (2016).

    Article  Google Scholar 

  47. J. Wen, S. Li, X. Liu, C.-F. Huang, J.-W. Wang, T. Shi, and K.-J. Wei, J. Guangxi Univ. (Nat. Sci. Ed.) 47, 723 (2022).

    Google Scholar 

  48. X. T. Song, D. Wang, X. M. Lu, D. J. Huang, D. Jiang, L. X. Li, X. Fang, Y. B. Zhao, and L. J. Zhou, Phys. Rev. A 101, 032319 (2020).

    Article  ADS  Google Scholar 

  49. S. Wang, W. Chen, Z. Q. Yin, D. Y. He, C. Hui, P. L. Hao, G. J. Fan-Yuan, C. Wang, L. J. Zhang, J. Kuang, S. F. Liu, Z. Zhou, Y. G. Wang, G. C. Guo, and Z. F. Han, Opt. Lett. 43, 2030 (2018), arXiv: 1805.09952.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kejin Wei.

Additional information

This study was supported by the National Natural Science Foundation of China (Grant Nos. 62171144, and 11905065), Guangxi Science Foundation (Grant Nos. 2021GXNSFAA220011, and 2021AC19384), Open Fund of IPOC (BUPT) (Grant No. IPOC2021A02), and Innovation Project of Guangxi Graduate Education (Grant No. YCSW2022040). We thank D. Ma for helpful discussions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Luo, D., Lin, G. et al. Fiber-based quantum secure direct communication without active polarization compensation. Sci. China Phys. Mech. Astron. 65, 120311 (2022). https://doi.org/10.1007/s11433-022-1976-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-022-1976-0

Navigation