Skip to main content
Log in

Quantum sensing of control errors in three-level systems by coherent control techniques

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

The quantum coherent control of a quantum system with high fidelity is rather important in quantum computation and quantum information processing. Many control techniques are used to reach these targets, such as resonant excitation, adiabatic passages, shortcuts to adiabaticity, and composite pulses. However, for a single pulse to realize population transfer, a tiny external error has a slight influence on the final population. The repeated application of the same pulse will greatly amplify the error effect, making it easy to be detected. Here, we propose to measure small control errors in three-level quantum systems through a coherent amplification of their effects using several coherent control techniques. For the two types of Hamiltonian with an SU(2) dynamic symmetry, we analyze how the fidelity of the population transfer is affected by the Rabi frequency error and static detuning deviation based on the pulse sequence with alternating and same phases, respectively. The results show that the sensitivity of detecting these errors can be effectively amplified by control pulse sequences. Furthermore, we discuss the efficiency of sensing the two errors with the control techniques by comparing the full width at half maximum of the population profiles. The results provide an accurate and reliable way for detecting the weak error in three-level quantum systems by repeatedly applying the coherent control pulse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Brif, R. Chakrabarti, and H. Rabitz, New J. Phys. 12, 075008 (2010), arXiv: 0912.5121.

    Article  ADS  Google Scholar 

  2. C. C. Gerry, and P. L. Knight, Introductory Quantum Optics (Cambridge University Press, Cambridge, 2005).

    Google Scholar 

  3. X. J. Lv, J. Lu, Z. D. Xie, J. Yang, G. Zhao, P. Xu, Y. Q. Qin, and S. N. Zhu, Opt. Lett. 36, 7 (2011).

    Article  ADS  Google Scholar 

  4. M. Shapiro, and P. Brumer, Quantum Control of Molecular Processes (Wiley, Vancouver, 2012).

    MATH  Google Scholar 

  5. C. D. Hill, Phys. Rev. Lett. 98, 180501 (2007), arXiv: quantph/0610059.

    Article  ADS  Google Scholar 

  6. C. Piltz, B. Scharfenberger, A. Khromova, A. F. Varón, and C. Wunderlich, Phys. Rev. Lett. 110, 200501 (2013), arXiv: 1208.2204.

    Article  ADS  Google Scholar 

  7. Q. D. Su, R. Bruinsma, and W. C. Campbell, Phys. Rev. A 104, 052625 (2021), arXiv: 2108.04726.

    Article  ADS  Google Scholar 

  8. N. V. Vitanov, and M. Drewsen, Phys. Rev. Lett. 122, 173202 (2019), arXiv: 1901.11487.

    Article  ADS  Google Scholar 

  9. F. Q. Dou, Y. J. Wang, and J. A. Sun, Lett. J. Explor. Front. Phys. 131, 43001 (2020), arXiv: 2004.09429.

    Google Scholar 

  10. P. Dietiker, E. Miloglyadov, M. Quack, A. Schneider, and G. Seyfang, J. Chem. Phys. 143, 244305 (2015).

    Article  ADS  Google Scholar 

  11. Y. H. Issoufa, and A. Messikh, Phys. Rev. A 90, 055402 (2014).

    Article  ADS  Google Scholar 

  12. N. N. Zhang, M. J. Tao, W. T. He, X. Y. Chen, X. Y. Kong, F. G. Deng, N. Lambert, and Q. Ai, Front. Phys. 16, 51501 (2021), arXiv: 2007.02303.

    Article  ADS  Google Scholar 

  13. X. Long, W. T. He, N. N. Zhang, K. Tang, Z. Lin, H. Liu, X. Nie, G. Feng, J. Li, T. Xin, Q. Ai, and D. Lu, Phys. Rev. Lett. 129, 070502 (2022), arXiv: 2208.05847.

    Article  ADS  Google Scholar 

  14. L. Allen, and J. H. Eberly, Optical Resonance and Two-Level Atoms (Wiley, New York, 1975).

    Google Scholar 

  15. A. A. Rangelov, N. V. Vitanov, L. P. Yatsenko, B. W. Shore, T. Halfmann, and K. Bergmann, Phys. Rev. A 72, 053403 (2005).

    Article  ADS  Google Scholar 

  16. N. V. Vitanov, L. P. Yatsenko, and K. Bergmann, Phys. Rev. A 68, 043401 (2003).

    Article  ADS  Google Scholar 

  17. E. A. Shapiro, V. Milner, and M. Shapiro, Phys. Rev. A 79, 023422 (2009), arXiv: 0811.0857.

    Article  ADS  Google Scholar 

  18. G. S. Vasilev, A. Kuhn, and N. V. Vitanov, Phys. Rev. A 80, 013417 (2009).

    Article  ADS  Google Scholar 

  19. G. Dridi, S. Guérin, V. Hakobyan, H. R. Jauslin, and H. Eleuch, Phys. Rev. A 80, 043408 (2009), arXiv: 0908.0377.

    Article  ADS  Google Scholar 

  20. H. R. LewisJr., and W. B. Riesenfeld, J. Math. Phys. 10, 1458 (1969).

    Article  ADS  Google Scholar 

  21. X. Chen, A. Ruschhaupt, S. Schmidt, A. del Campo, D. Guéry-Odelin, and J. G. Muga, Phys. Rev. Lett. 104, 063002 (2010), arXiv: 0910.0709.

    Article  ADS  Google Scholar 

  22. A. Ruschhaupt, X. Chen, D. Alonso, and J. G. Muga, New J. Phys. 14, 093040 (2012), arXiv: 1206.1691.

    Article  ADS  Google Scholar 

  23. X. K. Song, H. Zhang, Q. Ai, J. Qiu, and F. G. Deng, New J. Phys. 18, 023001 (2016), arXiv: 1509.00097.

    Article  ADS  Google Scholar 

  24. Y. C. Li, and X. Chen, Phys. Rev. A 94, 063411 (2016), arXiv: 1611.04375.

    Article  ADS  Google Scholar 

  25. X. K. Song, Q. Ai, J. Qiu, and F. G. Deng, Phys. Rev. A 93, 052324 (2016), arXiv: 1602.00050.

    Article  ADS  Google Scholar 

  26. B. H. Huang, Y. H. Chen, Q. C. Wu, J. Song, and Y. Xia, Laser Phys. Lett. 13, 105202 (2016).

    Article  ADS  Google Scholar 

  27. B. H. Huang, Y. H. Kang, Y. H. Chen, Q. C. Wu, J. Song, and Y. Xia, Phys. Rev. A 96, 022314 (2017), arXiv: 1708.03433.

    Article  ADS  Google Scholar 

  28. I. Setiawan, B. Eka Gunara, S. Masuda, and K. Nakamura, Phys. Rev. A 96, 052106 (2017), arXiv: 1711.04074.

    Article  ADS  Google Scholar 

  29. X. T. Yu, Q. Zhang, Y. Ban, and X. Chen, Phys. Rev. A 97, 062317 (2018), arXiv: 1805.06544.

    Article  ADS  Google Scholar 

  30. S. Qi, and J. Jing, Phys. Rev. A 105, 053710 (2022), arXiv: 2201.12536.

    Article  ADS  Google Scholar 

  31. Y. H. Kang, Y. H. Chen, X. Wang, J. Song, Y. Xia, A. Miranowicz, S. B. Zheng, and F. Nori, Phys. Rev. Res. 4, 013233 (2022), arXiv: 2110.01933.

    Article  Google Scholar 

  32. U. Boscain, G. Charlot, J. P. Gauthier, S. Guérin, and H. R. Jauslin, J. Math. Phys. 43, 2107 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  33. D. J. Gorman, K. C. Young, and K. B. Whaley, Phys. Rev. A 86, 012317 (2012).

    Article  ADS  Google Scholar 

  34. S. J. Glaser, U. Boscain, T. Calarco, C. P. Koch, W. Köckenberger, R. Kosloff, I. Kuprov, B. Luy, S. Schirmer, T. Schulte-Herbrüggen, D. Sugny, and F. K. Wilhelm, Eur. Phys. J. D 69, 279 (2015).

    Article  ADS  Google Scholar 

  35. A. Baksic, H. Ribeiro, and A. A. Clerk, Phys. Rev. Lett. 116, 230503 (2016), arXiv: 1512.03026.

    Article  ADS  Google Scholar 

  36. Y. H. Kang, Y. H. Chen, Z. C. Shi, J. Song, and Y. Xia, Phys. Rev. A 94, 052311 (2016), arXiv: 1610.07751.

    Article  ADS  Google Scholar 

  37. H. Cao, S. W. Yao, and L. X. Cen, Phys. Rev. A 100, 053410 (2019), arXiv: 1907.11937.

    Article  ADS  Google Scholar 

  38. B. T. Torosov, S. Guérin, and N. V. Vitanov, Phys. Rev. Lett. 106, 233001 (2011).

    Article  ADS  Google Scholar 

  39. G. T. Genov, D. Schraft, T. Halfmann, and N. V. Vitanov, Phys. Rev. Lett. 113, 043001 (2014), arXiv: 1403.1201.

    Article  ADS  Google Scholar 

  40. B. T. Torosov, and N. V. Vitanov, Phys. Rev. A 97, 043408 (2018), arXiv: 1802.00958.

    Article  ADS  Google Scholar 

  41. G. T. Genov, and N. V. Vitanov, Phys. Rev. Lett. 110, 133002 (2013), arXiv: 1208.2287.

    Article  ADS  Google Scholar 

  42. D. Barredo, H. Labuhn, S. Ravets, T. Lahaye, A. Browaeys, and C. S. Adams, Phys. Rev. Lett. 114, 113002 (2015), arXiv: 1408.1055.

    Article  ADS  Google Scholar 

  43. T. Nöbauer, A. Angerer, B. Bartels, M. Trupke, S. Rotter, J. Schmiedmayer, F. Mintert, and J. Majer, Phys. Rev. Lett. 115, 190801 (2015), arXiv: 1412.5051.

    Article  ADS  Google Scholar 

  44. L. van Damme, Q. Ansel, S. J. Glaser, and D. Sugny, Phys. Rev. A 95, 063403 (2017), arXiv: 1704.07653.

    Article  ADS  Google Scholar 

  45. G. Dridi, K. Liu, and S. Guérin, Phys. Rev. Lett. 125, 250403 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  46. S. L. Wu, W. Ma, X. L. Huang, and X. Yi, Phys. Rev. Appl. 16, 044028 (2021), arXiv: 2103.12336.

    Article  ADS  Google Scholar 

  47. R. Qi, Z. Sun, Z. Lin, P. Niu, W. Hao, L. Song, Q. Huang, J. Gao, L. Yin, and G. L. Long, Light. Sci. Appl. 8, 22 (2019), arXiv: 1810.11806.

    Article  ADS  Google Scholar 

  48. Y. B. Sheng, L. Zhou, and G. L. Long, Sci. Bull. 67, 367 (2022).

    Article  Google Scholar 

  49. H. J. Kimble, Nature 453, 1023 (2008), arXiv: 0806.4195.

    Article  ADS  Google Scholar 

  50. A. W. Harrow, and M. A. Nielsen, Phys. Rev. A 68, 012308 (2003), arXiv: quant-ph/0301108.

    Article  ADS  Google Scholar 

  51. P. A. Ivanov, K. Singer, N. V. Vitanov, and D. Porras, Phys. Rev. Appl. 4, 054007 (2015).

    Article  ADS  Google Scholar 

  52. C. L. Degen, F. Reinhard, and P. Cappellaro, Rev. Mod. Phys. 89, 035002 (2017), arXiv: 1611.02427.

    Article  ADS  Google Scholar 

  53. P. A. Ivanov, and N. V. Vitanov, Phys. Rev. A 97, 032308 (2018), arXiv: 1801.04764.

    Article  ADS  Google Scholar 

  54. H. Zhang, G. Q. Qin, X. K. Song, and G. L. Long, Opt. Express. 29, 5358 (2021).

    Article  ADS  Google Scholar 

  55. N. V. Vitanov, Phys. Rev. A 103, 063104 (2021), arXiv: 2105.11661.

    Article  ADS  Google Scholar 

  56. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Rev. Mod. Phys. 77, 633 (2005).

    Article  ADS  Google Scholar 

  57. H. Dong, D. Z. Xu, J. F. Huang, and C. P. Sun, Light. Sci. Appl. 1, e2 (2012).

    Article  Google Scholar 

  58. N. V. Vitanov, A. A. Rangelov, B. W. Shore, and K. Bergmann, Rev. Mod. Phys. 89, 015006 (2017), arXiv: 1605.00224.

    Article  ADS  Google Scholar 

  59. J. Randall, A. M. Lawrence, S. C. Webster, S. Weidt, N. V. Vitanov, and W. K. Hensinger, Phys. Rev. A 98, 043414 (2018), arXiv: 1708.02634.

    Article  ADS  Google Scholar 

  60. F. T. Hioe, J. Opt. Soc. Am. B 4, 1327 (1987).

    Article  ADS  Google Scholar 

  61. G. T. Genov, B. T. Torosov, and N. V. Vitanov, Phys. Rev. A 84, 063413 (2011).

    Article  ADS  Google Scholar 

  62. N. V. Vitanov, and K. A. Suominen, Phys. Rev. A 59, 4580 (1999), arXiv: quant-ph/9811065.

    Article  ADS  Google Scholar 

  63. G. S. Vasilev, and N. V. Vitanov, J. Chem. Phys. 123, 174106 (2005).

    Article  ADS  Google Scholar 

  64. J. Zakrzewski, Phys. Rev. A 32, 3748 (1985).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12004006, 12075001, and 12175001), Anhui Provincial Key Research and Development Plan (Grant No. 2022b13020004), and Anhui Provincial Natural Science Foundation (Grant No. 2008085QA43).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xue-Ke Song or Dong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Song, XK., Wang, D. et al. Quantum sensing of control errors in three-level systems by coherent control techniques. Sci. China Phys. Mech. Astron. 66, 240314 (2023). https://doi.org/10.1007/s11433-022-2034-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-022-2034-5

PACS number(s)

Navigation