Skip to main content
Log in

Efficient fault-tolerant quantum dialogue protocols based on dictionary encoding without decoy photons

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

This paper proposes two efficient block transmission and two efficient two-step transmission quantum dialogue (QD) protocols that are robust against collective-dephasing and collective-rotation noises, respectively. To counter collective noise, the carriers used to carry the message must correspond to the decoherence-free states under this collective noise. In addition to carrying messages, these quantum states and their combinations are used to ensure the security of transmission and prevent message distortion. In quantum communications, decoy photons are often used to detect eavesdroppers and always account for half of the total number of qubits, which is a burden on scarce quantum resources. Due to quantum state disclosure, the decoy photons used for inspection can no longer be utilized for transmission. Therefore, a dictionary is employed as an encoding mechanism to achieve self-checking without revealing these states. This approach enables photons to detect eavesdroppers while concurrently carrying keys. The proposed QD protocols can eliminate the consumption of decoy photons, significantly improve the qubit efficiency, and conduct security analysis to ensure that there is no information leakage. Two transmission modes with the same efficiency can be selected according to the noisy environment and time windows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Theoret. Comput. Sci. 560, 7–11 (2014)

    Article  MathSciNet  Google Scholar 

  2. Deng, F.-G., Gui, L.L., Liu, X.-S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68(4), 042317 (2003)

    Article  ADS  Google Scholar 

  3. Nguyen, B.: Quantum dialogue. Phys. Lett. A 328(1), 6–10 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  4. Gao, F., Guo, F., Wen, Q., Zhu, F.: Revisiting the security of quantum dialogue and bidirectional quantum secure direct communication. Sci. China, Ser. G 51(5), 559–566 (2008)

    Article  Google Scholar 

  5. Xia, Y., Fu, C.-B., Zhang, S., Hong, S.-K., Yeon, K.-H., Um, C.-I.: Quantum dialogue by using the GHZ state. J. Korean Phys. Soc. 48(1), 24 (2006)

    Google Scholar 

  6. Ji, X., Zhang, S.: Secure quantum dialogue based on single-photon. Chin. Phys. 15(7), 1418 (2006)

    Article  Google Scholar 

  7. Shi, G.-F., Xi, X.-Q., Tian, X.-L., Yue, R.-H.: Bidirectional quantum secure communication based on a shared private Bell state. Optics Commun. 282(12), 2460–2463 (2009)

    Article  ADS  Google Scholar 

  8. Gao, G.: Two quantum dialogue protocols without information leakage. Optics Commun. 283(10), 2288–2293 (2010)

    Article  ADS  Google Scholar 

  9. Boileau, J.-C., Gottesman, D., Laflamme, R., Poulin, D., Spekkens, R.W.: Robust polarization-based quantum key distribution over a collective-noise channel. Phys. Rev. Lett. 92(1), 017901 (2004)

    Article  ADS  Google Scholar 

  10. Li, X.-H., Deng, F.-G., Zhou, H.-Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78(2), 022321 (2008)

    Article  ADS  Google Scholar 

  11. Yang, C.-W., Hwang, T.: Quantum dialogue protocols immune to collective noise. Quantum Inf. Process. 12(6), 2131–2142 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  12. Deng, F.-G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69(5), 052319 (2004)

    Article  ADS  Google Scholar 

  13. Paolo, Z., Rasetti, M.: Noiseless quantum codes. Phys. Rev. Lett. 79(17), 3306 (1997)

    Article  ADS  Google Scholar 

  14. Kwiat, P.G., Berglund, A.J., Altepeter, J.B., White, A.G.: Experimental verification of decoherence-free subspaces. Science 290(5491), 498–501 (2000)

    Article  ADS  Google Scholar 

  15. Ye, T.-Y.: Fault-tolerant quantum dialogue without information leakage based on entanglement swapping between two logical bell states. Commun. Theor. Phys. 63(4), 431 (2015)

    Article  ADS  Google Scholar 

  16. Yang, Y.-G., Gao, S., Zhou, Y.-H., Shi, W.-M.: New secure quantum dialogue protocols over collective noisy channels. Int. J. Theor. Phys. 58(9), 2810–2822 (2019)

    Article  MathSciNet  Google Scholar 

  17. Chang, C.-H., Yang, C.-W., Hzu, G.-R., Hwang, T., Kao, S.-H.: Quantum dialogue protocols over collective noise using entanglement of GHZ state. Quantum Inf. Process. 15, 2971–2991 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  18. Deng, F.-G., Li, X.-H., Zhou, H.-Y., Zhang, Z.-J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72(4), 044302 (2005)

    Article  ADS  Google Scholar 

  19. Gisin, N., Fasel, S., Kraus, B., Zbinden, H., Ribordy, G.: Trojan-horse attacks on quantum-key-distribution systems. Phys. Rev. A 73(2), 022320 (2006)

    Article  ADS  Google Scholar 

  20. Shen, D., Ma, W., Yin, X., Li, X.: Quantum dialogue with authentication based on Bell states. Int. J. Theor. Phys. 52(6), 1825–1835 (2013)

    Article  MathSciNet  Google Scholar 

  21. Ye, T.-Y.: Fault-tolerant authenticated quantum dialogue using logical Bell states. Quantum Inf. Process. 14(9), 3499–3514 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  22. Min, X., Cao, Y.-R., Song, X.-L.: Efficient and secure authenticated quantum dialogue protocols over collective-noise channels. Chin. Phys. Lett. 34(3), 030302 (2017)

    Article  Google Scholar 

  23. Qi, J.-M., Xu, G., Chen, X.-B., Wang, T.-Y., Cai, X.-Q., Yang, Y.-X.: Two authenticated quantum dialogue protocols based on three-particle entangled states. Quantum Inf. Process. 17(9), 1–19 (2018)

    Article  MathSciNet  Google Scholar 

  24. Lang, Y.-F.: Fault tolerant authenticated quantum dialogue based on logical qubits and controlled-not operations. Int. J. Theor. Phys. 58(2), 531–542 (2019)

    Article  Google Scholar 

  25. Xia, Y., Song, J., Nie, J., Song, H.-S.: Controlled secure quantum dialogue using a pure entangled GHZ states. Commun. Theor. Phys. 48(5), 841 (2007)

    Article  ADS  Google Scholar 

  26. Kao, S.-H., Hwang, T.: Controlled quantum dialogue robust against conspiring users. Quantum Inf. Process. 15(10), 4313–4324 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  27. Chang, L.-W., Zhang, Y.-Q., Tian, X.-X., Qian, Y.-H., Bai, Z.-L., Liu, Y.: Fault tolerant controlled quantum dialogue with logical brown states against collective noise. Int. J. Theor. Phys. 59(7), 2155–2174 (2020)

    Article  MathSciNet  Google Scholar 

  28. Chang, L.-W., Zhang, Y.-Q., Tian, X.-X., Qian, Y.-H., Zheng, S.-H.: Fault tolerant controlled quantum dialogue against collective noise. Chin. Phys. B 29(1), 010304 (2020)

    Article  ADS  Google Scholar 

  29. Shukla, C., Thapliyal, K., Pathak, A.: Semi-quantum communication: protocols for key agreement, controlled secure direct communication and dialogue. Quantum Inf. Process. 16(12), 1–19 (2017)

    Article  MathSciNet  Google Scholar 

  30. Ye, T.-Y., Ye, C.-Q.: Semi-quantum dialogue based on single photons. Int. J. Theor. Phys. 57(5), 1440–1454 (2018)

    Article  MathSciNet  Google Scholar 

  31. Pan, H.-M.: Semi-quantum dialogue with Bell entangled states. Int. J. Theoret. Phys. 59(5), 1364–1371 (2020)

    Article  MathSciNet  Google Scholar 

  32. Zhou, R.-G., Zhang, X., Li, F.: Three-party semi-quantum protocol for deterministic secure quantum dialogue based on GHZ states. Quantum Inf. Process. 20(4), 153 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  33. Ye, T.-Y., Li, H.-K., Hu, J.-L.: Information leakage resistant quantum dialogue with single photons in both polarization and spatial-mode degrees of freedom. Quantum Inf. Process. 20(6), 209 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  34. Lang, Y.-F.: Improvement of information leakage resistant quantum dialogue with single photons in both polarization and spatial-mode degrees of freedom. Int. J. Theor. Phys. 61(6), 1–8 (2022)

    Article  MathSciNet  Google Scholar 

  35. Lang, Y.-F.: Efficient quantum dialogue using a photon in double degrees of freedom. Int. J. Theor. Phys. 61(4), 1–9 (2022)

    Article  MathSciNet  Google Scholar 

  36. Steven, K., Lee, D.-H., Zhang, S.-C.: Global phase diagram in the quantum Hall effect. Phys. Rev. B 46(4), 2223 (1992)

    Article  ADS  Google Scholar 

  37. Gambetta, J.M., Chow, J.M., Steffen, M.: Building logical qubits in a superconducting quantum computing system. NPJ Quantum Inform. 3(1), 2 (2017)

    Article  ADS  Google Scholar 

  38. Hu, L., Ma, Y., Cai, W., Mu, X., Xu, Y., Wang, W., Wu, Y., Wang, H., Song, Y.P., Zou, C.-L., Girvin, S.M., Duan, L.-M., Sun, L.: Quantum error correction and universal gate set operation on a binomial bosonic logical qubit. Nat. Phys. 15(5), 503–508 (2019)

    Article  Google Scholar 

  39. Chen, X., Gu, Z.-C., Wen, X.-G.: Local unitary transformation, long-range quantum entanglement, wave function renormalization, and topological order. Phys. Rev. B 82(15), 155138 (2010)

    Article  ADS  Google Scholar 

  40. Ralph, T.C., Langford, N.K., Bell, T.B., White, A.G.: Linear optical controlled-NOT gate in the coincidence basis. Phys. Rev. A 65(6), 062324 (2002)

    Article  ADS  Google Scholar 

  41. O’Brien, J.L., Pryde, G.J., White, A.G., Ralph, T.C., Branning, D.: Demonstration of an all-optical quantum controlled-NOT gate. Nature 426(6964), 264–267 (2003)

    Article  ADS  Google Scholar 

  42. O’Brien, J.L., Pryde, G.J., Gilchrist, A., James, D.F.V., Langford, N.K., Ralph, T.C., White, A.G.: Quantum process tomography of a controlled-NOT gate. Phys. Rev. Lett. 93(8), 080502 (2004)

    Article  ADS  Google Scholar 

  43. Okamoto, R., Hofmann, H.F., Takeuchi, S., Sasaki, K.: Demonstration of an optical quantum controlled-NOT gate without path interference. Phys. Rev. Lett. 95(21), 210506 (2005)

    Article  ADS  Google Scholar 

  44. Langford, N.K., Weinhold, T.J., Prevedel, R., Resch, K.J., Gilchrist, A., O’Brien, J.L., Pryde, G.J., White, A.G.: Demonstration of a simple entangling optical gate and its use in Bell-state analysis. Phys. Rev. Lett. 95(21), 210504 (2005)

    Article  ADS  Google Scholar 

  45. Yamamoto, T., Neeley, M., Lucero, E., Bialczak, R.C., Kelly, J., Lenander, M., Mariantoni, M., O’Connell, A.D., Sank, D., Wang, H., Weides, M., Wenner, J., Yin, Y., Cleland, A.N., John, M.: Quantum process tomography of two-qubit controlled-Z and controlled-NOT gates using superconducting phase qubits. Phys. Rev. B 82(18), 184515 (2010)

    Article  ADS  Google Scholar 

  46. Chen, K., Li, C.-M., Zhang, Q., Chen, Y.-A., Goebel, A., Chen, S., Mair, A., Pan, J.-W.: Experimental realization of one-way quantum computing with two-photon four-qubit cluster states. Phys. Rev. Lett. 99(12), 120503 (2007)

    Article  ADS  Google Scholar 

  47. Sun, Z.-W., Du, R.-G., Long, D.-Y.: Quantum secure direct communication with two-photon four-qubit cluster states. Int. J. Theor. Phys. 51, 1946–1952 (2012)

    Article  Google Scholar 

  48. Zhang, Q.-N., Li, C.-C., Li, Y.-H., Nie, Y.-I.: Quantum secure direct communication based on four-qubit cluster states. Int. J. Theor. Phys. 52, 22–27 (2013)

    Article  MathSciNet  Google Scholar 

  49. Chang, Y., Xu, C., Zhang, S., Yan, L.: Controlled quantum secure direct communication and authentication protocol based on five-particle cluster state and quantum one-time pad. Chin. Sci. Bull. 59, 2541–2546 (2014)

    Article  Google Scholar 

  50. Shannon, C.E.: Communication theory of secrecy systems. Bell Syst Techn. J. 28(4), 656–715 (1949)

    Article  MathSciNet  Google Scholar 

  51. Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85(26), 5635 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was partially supported by the National Science and Technology Council, Taiwan, R.O.C. (Grant Nos. NSTC 112-2221-E-005-048, NSTC 111-2634-F-005-001, and NSTC 112-2634-F-005-001-MBK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason Lin.

Ethics declarations

Conflict of interest

The authors certify that there is no actual or potential conflict of interest in relation to this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, CY., Lin, J. Efficient fault-tolerant quantum dialogue protocols based on dictionary encoding without decoy photons. Quantum Inf Process 23, 12 (2024). https://doi.org/10.1007/s11128-023-04210-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-04210-y

Keywords

Navigation