Skip to main content

Advertisement

Log in

Utilization of light by fucoxanthin–chlorophyll-binding protein in a marine centric diatom, Chaetoceros gracilis

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The major light-harvesting pigment protein complex (fucoxanthin–chlorophyll-binding protein complex; FCP) was purified from a marine centric diatom, Chaetoceros gracilis, by mild solubilization followed by sucrose density gradient centrifugation, and then characterized. The dynamic light scattering measurement showed unimodality, indicating that the complex was highly purified. The amount of chlorophyll a (Chl a) bound to the purified FCP accounted for more than 60 % of total cellular Chl a. The complex was composed of three abundant polypeptides, although there are nearly 30 FCP-related genes. The two major components were identified as Fcp3 (Lhcf3)- and Fcp4 (Lhcf4)-equivalent proteins based on their internal amino acid sequences and a two-dimensional isoelectric focusing electrophoresis analysis developed in this work. Compared with the thylakoids, the FCP complex showed higher contents of fucoxanthin and chlorophyll c but lower contents of the xanthophyll cycle pigments diadinoxanthin and diatoxanthin. Fluorescence excitation spectra analyses indicated that light harvesting, rather than photosystem protection, is the major function of the purified FCP complex, which is associated with more than 60 % of total cellular Chl a. These findings suggest that the huge amount of Chl bound to the FCP complex composed of Lhcf3, Lhcf4, and an unidentified minor protein has a light-harvesting function to allow efficient photosynthesis under the dim-light conditions in the ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

Chl:

Chlorophyll

DDM:

n-Dodecyl-β-d-maltopyranoside

FCP:

Fucoxanthin–chlorophyll-binding protein

GRAVY:

Grand average hydropathicity

HTG:

n-Heptyl-β-d-thioglucoside

IPG:

Immobilized pH gradient

MALDI-TOF:

Matrix-assisted laser desorption ionization-time of flight mass spectroscopy

References

  • Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH, Zhou S, Allen AE, Apt KE, Bechner M, Brzezinski MA, Chaal BK, Chiovitti A, Davis AK, Demarest MS, Detter JC, Glavina T, Goodstein D, Hadi MZ, Hellsten U, Hildebrand M, Jenkins BD, Jurka J, Kapitonov VV, Kroger N, Lau WW, Lane TW, Larimer FW, Lippmeier JC, Lucas S, Medina M, Montsant A, Obornik M, Parker MS, Palenik B, Pazour GJ, Richardson PM, Rynearson TA, Saito MA, Schwartz DC, Thamatrakoln K, Valentin K, Vardi A, Wilkerson FP, Rokhsar DS (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306(5693):79–86. doi:10.1126/science.1101156

    Article  CAS  PubMed  Google Scholar 

  • Arsalane W, Rousseau B, Duval J-C (1994) Influence of the pool size of the xanthophyll cycle on the effects of light stress in a diatom: competition between photoprotection and photoinhibition. Photochem Photobiol 60:237–243

    Article  CAS  Google Scholar 

  • Bailleul B, Rogato A, de Martino A, Coesel S, Cardol P, Bowler C, Falciatore A, Finazzi G (2010) An atypical member of the light-harvesting complex stress-related protein family modulates diatom responses to light. Proc Natl Acad Sci USA 107(42):18214–18219. doi:10.1073/pnas.1007703107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ban A, Aikawa S, Hattori H, Sasaki H, Sampei M, Kudoh S, Fukuchi M, Satoh K, Kashino Y (2006) Comparative analysis of photosynthetic properties in ice algae and phytoplankton inhabiting Franklin Bay, the Canadian Arctic, with those in mesophilic diatoms during CASES 03-04. Polar Biosci 19:11–28

    Google Scholar 

  • Berkaloff C, Caron L, Rousseau B (1990) Subunit organization of PSI particles from brown algae and diatoms: polypeptide and pigment analysis. Photosynth Res 23(2):181–193. doi:10.1007/BF00035009

    Article  CAS  PubMed  Google Scholar 

  • Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kuo A, Maheswari U, Martens C, Maumus F, Otillar RP, Rayko E, Salamov A, Vandepoele K, Beszteri B, Gruber A, Heijde M, Katinka M, Mock T, Valentin K, Verret F, Berges JA, Brownlee C, Cadoret JP, Chiovitti A, Choi CJ, Coesel S, De Martino A, Detter JC, Durkin C, Falciatore A, Fournet J, Haruta M, Huysman MJ, Jenkins BD, Jiroutova K, Jorgensen RE, Joubert Y, Kaplan A, Kroger N, Kroth PG, La Roche J, Lindquist E, Lommer M, Martin-Jezequel V, Lopez PJ, Lucas S, Mangogna M, McGinnis K, Medlin LK, Montsant A, Oudot-Le Secq MP, Napoli C, Obornik M, Parker MS, Petit JL, Porcel BM, Poulsen N, Robison M, Rychlewski L, Rynearson TA, Schmutz J, Shapiro H, Siaut M, Stanley M, Sussman MR, Taylor AR, Vardi A, von Dassow P, Vyverman W, Willis A, Wyrwicz LS, Rokhsar DS, Weissenbach J, Armbrust EV, Green BR, Van de Peer Y, Grigoriev IV (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456(7219):239–244. doi:10.1038/nature07410

    Article  CAS  PubMed  Google Scholar 

  • Büchel C (2003) Fucoxanthin-chlorophyll proteins in diatoms: 18 and 19 kDa subunits assemble into different oligomeric states. Biochemistry 42(44):13027–13034. doi:10.1021/bi0349468

    Article  PubMed  Google Scholar 

  • Büchel C (2014) Fucoxanthin–chlorophyll-proteins and non-photochemical fluorescence quenching of diatoms. In: Demmig-Adams B, Garab G, Adams WW III, Govindjee (eds) Non-photochemical quenching and energy dissipation in plants, algae and cyanobacteria. Springer Netherlands, Dordrecht, pp 259–275

    Google Scholar 

  • Caron L, Berkaloff C, Duval JC, Jupin H (1987) Chlorophyll fluorescence transients from the diatom Phaeodactylum tricornutum: relative rates of cyclic phosphorylation and chlororespiration. Photosynth Res 11(2):131–139. doi:10.1007/BF00018271

    Article  CAS  PubMed  Google Scholar 

  • Demmig-Adams B (1990) Carotenoids and photoprotection in plants: a role for the xanthophyll zeaxanthin. Biochim Biophys Acta 1020(1):1–24

    Article  CAS  Google Scholar 

  • Emanuelsson O, Nielsen H, von Heijne G (1999) ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci 8(5):978–984. doi:10.1110/ps.8.5.978

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using targetP, signalP and related tools. Nat Protoc 2(4):953–971. doi:10.1038/nprot.2007.131

    Article  CAS  PubMed  Google Scholar 

  • Fawley MW, Grossman AR (1986) Polypeptides of a light-harvesting complex of the diatom Phaeodactylum tricornutum are synthesized in the cytoplasm of the cell as precursors. Plant Physiol 81(1):149–155

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fujita Y, Ohki K (2004) On the 710 nm fluorescence emitted by the diatom Phaeodactylum tricornutum at room temperature. Plant Cell Physiol 45(4):392–397

    Article  CAS  PubMed  Google Scholar 

  • Furuya K, Hayashi M, Yabushita Y (1998) HPLC determination of phytoplankton pigments using N,N-dimethylformamide. J Oceanogr 54(2):199–203

    Article  CAS  Google Scholar 

  • Gildenhoff N, Amarie S, Gundermann K, Beer A, Büchel C, Wachtveitl J (2010) Oligomerization and pigmentation dependent excitation energy transfer in fucoxanthin–chlorophyll proteins. Biochim Biophys Acta 1797(5):543–549. doi:10.1016/j.bbabio.2010.01.024

    Article  CAS  PubMed  Google Scholar 

  • Green BR (2003) The evolution of light-harvesting antennas. In: Green BR, Parson WW (eds) Light-harvesting antennas in photosynthesis. Kluwer Academic Publishers, Dortrecht, pp 129–168

    Chapter  Google Scholar 

  • Grouneva I, Rokka A, Aro EM (2011) The thylakoid membrane proteome of two marine diatoms outlines both diatom-specific and species-specific features of the photosynthetic machinery. J Proteome Res 10(12):5338–5353. doi:10.1021/pr200600f

    Article  CAS  PubMed  Google Scholar 

  • Gundermann K, Schmidt M, Weisheit W, Mittag M, Büchel C (2013) Identification of several sub-populations in the pool of light harvesting proteins in the pennate diatom Phaeodactylum tricornutum. Biochim Biophys Acta 1827(3):303–310. doi:10.1016/j.bbabio.2012.10.017

    Google Scholar 

  • Hashihama F, Umeda H, Hamada C, Kudoh S, Hirawake T, Satoh K, Fukuchi M, Kashino Y (2010) Light acclimation states of phytoplankton in the Southern Ocean, determined using photosynthetic pigment distribution. Mar Biol 157(10):2263–2278. doi:10.1007/s00227-010-1494-5

    Article  CAS  Google Scholar 

  • Ikeda Y, Satoh K, Kashino Y (2005) Characterization of photosystem I complexes purified from a diatom, Chaetoceros gracilis. In: van der Est A, Bruce D (eds) Photosynthesis: fundamental aspects to global perspectives, vol 1. Alliance Communications Group, Kansas, pp 38–40

    Google Scholar 

  • Ikeda Y, Komura M, Watanabe M, Minami C, Koike H, Itoh S, Kashino Y, Satoh K (2008) Photosystem I complexes associated with fucoxanthin–chlorophyll-binding proteins from a marine centric diatom, Chaetoceros gracilis. Biochim Biophys Acta 1777:351–361. doi:10.1016/j.bbabio.2008.01.011

    Article  CAS  PubMed  Google Scholar 

  • Ikeya T, Kashino Y, Kudoh S, Imura S, Watanabe K, Fukuchi M (2000) Acclimation of photosynthetic properties in psychrophilic diatom isolates under different light intensities. Polar Biosci 13:43–54

    Google Scholar 

  • Ikeda Y, Yamagishi A, Komura M, Suzuki T, Dohmae N, Shibata Y, Itoh S, Koike H, Satoh K (2013) Two types of fucoxanthin–chlorophyll-binding proteins I tightly bound to the photosystem I core complex in marine centric diatoms. Biochim Biophys Acta 1827:529–539. doi:10.1016/j.bbabio.2013.02.003

    Article  CAS  PubMed  Google Scholar 

  • Joshi-Deo J, Schmidt M, Gruber A, Weisheit W, Mittag M, Kroth PG, Büchel C (2010) Characterization of a trimeric light-harvesting complex in the diatom Phaeodactylum tricornutum built of FcpA and FcpE proteins. J Exp Bot 61(11):3079–3087. doi:10.1093/jxb/erq136

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kashino Y (2003) Separation methods in the analysis of protein membrane complexes. J Chromatogr B 797(1–2):191–216

    Article  CAS  Google Scholar 

  • Kashino Y, Kudoh S (2003) Concerted response of xanthophyll-cycle pigments in a marine diatom, Chaetoceros gracilis, to the sifts of light condition. Phycol Res 51(3):168–172

    Article  CAS  Google Scholar 

  • Kashino Y, Enami I, Satoh K, Katoh S (1990) Immunological cross-reactivity among corresponding proteins of photosystems I and II from widely divergent photosynthetic organisms. Plant Cell Physiol 31:479–488

    CAS  Google Scholar 

  • Kashino Y, Yamashita M, Koike H, Satoh K (1995) Properties of n-heptyl-β-d-thioglucoside-extracted photosystem II core complexes from spinach. In: Mathis P (ed) Photosynthesis: from light to biosphere, vol I. Kluwer, Dortricht, pp 631–634

    Chapter  Google Scholar 

  • Kashino Y, Koike H, Satoh K (2001) An improved sodium dodecyl sulfate-polyacrylamide gel electrophoresis system for the analysis of membrane protein complexes. Electrophoresis 22(6):1004–1007

    Article  CAS  PubMed  Google Scholar 

  • Kashino Y, Koike H, Yoshio M, Egashira H, Ikeuchi M, Pakrasi HB, Satoh K (2002) Low-molecular-mass polypeptide components of a photosystem II preparation from the thermophilic cyanobacterium Thermosynechococcus vulcanus. Plant Cell Physiol 43(11):1366–1373

    Article  CAS  PubMed  Google Scholar 

  • Kashino Y, Harayama T, Pakrasi HB, Satoh K (2007) Preparation of membrane proteins for analysis by two-dimensional gel electrophoresis. J Chromatogr B 849:282–292

    Article  CAS  Google Scholar 

  • Kirk JTO (1994) Light & photosynthesis in aquatic ecosystems, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Lepetit B, Volke D, Szabo M, Hoffmann R, Garab G, Wilhelm C, Goss R (2007) Spectroscopic and molecular characterization of the oligomeric antenna of the diatom Phaeodactylum tricornutum. Biochemistry 46(34):9813–9822. doi:10.1021/bi7008344

    Article  CAS  PubMed  Google Scholar 

  • Lohr M, Wilhelm C (1999) Algae displaying the diadinoxanthin cycle also possess the violaxanthin cycle. Proc Natl Acad Sci USA 96(15):8784–8789

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nagao R, Ishii A, Tada O, Suzuki T, Dohmae N, Okumura A, Iwai M, Takahashi T, Kashino Y, Enami I (2007) Isolation and characterization of oxygen-evolving thylakoid membranes and photosystem II particles from a marine diatom Chaetoceros gracilis. Biochim Biophys Acta 1767:1353–1362. doi:10.1016/j.bbabio.2007.10.007

    Article  CAS  PubMed  Google Scholar 

  • Nagao R, Tomo T, Noguchi E, Nakajima S, Suzuki T, Okumura A, Kashino Y, Mimuro M, Ikeuchi M, Enami I (2010) Purification and characterization of a stable oxygen-evolving photosystem II complex from a marine centric diatom, Chaetoceros gracilis. Biochim Biophys Acta 1797(2):160–166. doi:10.1016/j.bbabio.2009.09.008

    Article  CAS  PubMed  Google Scholar 

  • Nagao R, Tomo T, Noguchi E, Suzuki T, Okumura A, Narikawa R, Enami I, Ikeuchi M (2012) Proteases are associated with a minor fucoxanthin chlorophyll a/c-binding protein from the diatom, Chaetoceros gracilis. Biochim Biophys Acta 1817(12):2110–2117. doi:10.1016/j.bbabio.2012.08.005

    Article  CAS  PubMed  Google Scholar 

  • Nagao R, Takahashi S, Suzuki T, Dohmae N, Nakazato K, Tomo T (2013a) Comparison of oligomeric states and polypeptide compositions of fucoxanthin chlorophyll a/c-binding protein complexes among various diatom species. Photosynth Res 117(1–3):281–288. doi:10.1007/s11120-013-9903-5

    Article  CAS  PubMed  Google Scholar 

  • Nagao R, Yokono M, Akimoto S, Tomo T (2013b) High excitation energy quenching in fucoxanthin chlorophyll a/c-binding protein complexes from the diatom Chaetoceros gracilis. J Phys Chem B 117(23):6888–6895. doi:10.1021/jp403923q

    Article  CAS  PubMed  Google Scholar 

  • Nelson DM, Treguer P, Brzezinski MA, Leynaert A, Queguiner B (1995) Production and dissolution of biogenic silica in the ocean: revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Glob Biogeochem Cycles 9:359–372

    Article  CAS  Google Scholar 

  • Olaizola M, Yamamoto HY (1994) Short-term response of the diadinoxanthin cycle and fluorescence yield to high irradiance in Chaetoceros muelleri (Bacillariophyceae). J Phycol 30:606–612

    Article  CAS  Google Scholar 

  • Olaizola M, Laroche J, Kolber Z, Falkowski PG (1994) Non-photochemical fluorescence quenching and the diadinoxanthin cycle in a marine diatom. Photosynth Res 41:357–370

    Article  CAS  PubMed  Google Scholar 

  • Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta 975:384–394

    Article  CAS  Google Scholar 

  • Scala S, Carels N, Falciatore A, Chiusano ML, Bowler C (2002) Genome properties of the diatom Phaeodactylum tricornutum. Plant Physiol 129(3):993–1002. doi:10.1104/pp.010713

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shibata K (1959) Spectrophotometry of translucent biological materials—opal glass transmission method. Methods Biochem Anal 7:77–109. doi:10.1002/9780470110232.ch3

    Article  CAS  Google Scholar 

  • Sims PA, Mann DG, Medlin LK (2006) Evolution of the diatoms: insights from fossil, biological and molecular data. Phycologia 4:361–402

    Article  Google Scholar 

  • Sonoike K, Katoh S (1990) Variation and estimation of the differential absorption coefficient of P-700 in spinach photosystem I preparations. Plant Cell Physiol 31(8):1079–1082

    CAS  Google Scholar 

  • Sugiura M, Harada S, Manabe T, Hayashi H, Kashino Y, Boussac A (2010) Psb30 contributes to structurally stabilise the Photosystem II complex in the thermophilic cyanobacterium Thermosynechococcus elongatus. Biochim Biophys Acta 1797(8):1546–1554. doi:10.1016/j.bbabio.2010.03.020

    Article  CAS  PubMed  Google Scholar 

  • Takahashi T, Inoue-Kashino N, Ozawa S, Takahashi Y, Kashino Y, Satoh K (2009) Photosystem II complex in vivo is a monomer. J Biol Chem 284(23):15598–15606. doi:10.1074/jbc.M109.000372

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhu SH, Green BR (2010) Photoprotection in the diatom Thalassiosira pseudonana: role of LI818-like proteins in response to high light stress. Biochim Biophys Acta 1797(8):1449–1457. doi:10.1016/j.bbabio.2010.04.003

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Japan Science and Technology Agency (JST), the Advanced Low Carbon Technology Research and Development Program (ALCA; to K. I., E. Y., and Y. K.) and the Adaptable and Seamless Technology Transfer Program through Target-driven Research and Development (A-STEP; to Y. K.). This work was also supported by a grant-in-aid from the Japan Society for the Promotion of Science (Grant 25740054 to N. I.-K.) and a Sasakawa Scientific Research Grant from The Japan Science Society (24-444 to T. I.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiro Kashino.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishihara, T., Ifuku, K., Yamashita, E. et al. Utilization of light by fucoxanthin–chlorophyll-binding protein in a marine centric diatom, Chaetoceros gracilis . Photosynth Res 126, 437–447 (2015). https://doi.org/10.1007/s11120-015-0170-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-015-0170-5

Keywords

Navigation